SEPTEMBER 2017 / IN - SEM (T2) F. Y. B.TECH. (COMMON) (SEMESTER - I)

COURSE NAME: Engineering Physics (2017 PATTERN)

N 4			CI	
M	ar	King	Schen	ne

Q. N	Vo.	Question	Marks Distribution	Marks	Cognitive level	Difficulty level	CO
Q1	a)	Starting from the expressions $E_F = E_{Fi} + kT ln \left(\frac{N_D}{n_i}\right)$ and $E_F = E_{Fi} - kT ln \left(\frac{N_A}{n_i}\right)$, derive an expression for built-in (or barrier) potential V_{bi} for a p-n junction diode.	$(E_{fi})_n$ - 2M, $(E_{Fi})_p$ -2M, $V_{bi} = (E_{fi})_n - (E_{Fi})_p$ -2M	[6]	Compre- hension	Medium	3
8	b)	Given density of states $g_c(E) = \frac{4}{\sqrt{\pi}} \left[\frac{m_e^*}{2\pi h^2} \right]^{3/2} (E - E_c)^{1/2}$ for $E \ge E_c$, derive the expression for number of electrons in the conduction band $n = N_c e^{\frac{(E_F - E_c)}{kT}}$ where, $N_c = 2 \left[\frac{m_e^* kT}{2\pi h^2} \right]^{3/2}$	Setting up the integral - 1M Change of variable - 3M Getting final expression using Gamma integral - 2M	[6]	Compre- hension	High	3
	c)	Calculate the probability of finding an electron 0.3 eV above the Fermi energy E_F at $T=450K$. Given Boltzmann's constant $k=8.6\times10^{-5}$ eV/K.	f(E) = 1/(1+exp((E-EF)/kT))) = 0.00043	[4]	Application	Medium	3
		The selection of the se	OR			1	
	a)	Draw the Fermi-Dirac distribution function for temperatures $T = 0$ K, T_1 and T_2 where $T_2 > T_1 > 0$ K. Discuss the physical significance of the temperature dependence of Fermi-Dirac distribution function.	Drawing - 3M Physical significance - 3M	[6]	Compre- hension	Medium	3
	b)	Starting from the expressions $n = N_c e^{\frac{(E_F - E_C)}{kT}}$ and $p = N_v e^{\frac{(E_v - E_F)}{kT}}$, obtain an expression for Fermi energy in an intrinsic semiconductor and show that it lies at the centre of the forbidden band if $m_e^* = m_h^*$. Given $N_c = 2 \left[\frac{m_e^* kT}{2\pi h^2} \right]^{3/2}$ and $N_v = 2 \left[\frac{m_h^* kT}{2\pi h^2} \right]^{3/2}$.	Equating two equations - 1M Writing $\frac{N_v}{N_c}$ - 2M Inverting the equation - 1M Substituting N_v and N_c equations and getting in terms of m_e^* and m_h^* - 1M Obtaining final equating by using $m_e^* = m_h^*$ - 1M	[6]	Compre- hension	Medium	3

Reserved on D:\Autonomy Old\Autonomous-

		Using ideal diode equation, calculate the current for applied voltage $V_A = +0.5V$ at 300K. Given $k/e = 8.6 \times 10^{-5}$ eV/K and $I_0 = 10^{-10}$ A.	$i = I_0(\exp(eV/kT) + 1) = 0.0261A$	[4]	Application	Medium	3
Q3	a)		Solar cell eq in dark - $1M$ Solar cell eq in light - $1M$ I_{sc} - $1M$ V_{oc} - $1M$ Labeled I-V curve - $2M$	[6]	Compre- hension	Medium	4
•	b)	Draw schematically, (a) I-V characteristics for two solar cells connected in series and (b) I-V characteristics for three solar cells connected in parallel. Draw I-V characteristics for single solar cell in these graphs for reference.	(a) - 2M (b) - 2M	[4]	Compre- hension	Medium	
	c)	The short circuit current for a solar cell is 8 A, and reverse saturation current is 2.5×10^{-8} A. Calculate V_{oc} at 350K. Given, $k/q = 8.6 \times 10^{-5}$ eV/K.	$kT = 0.0301$ $V_{oc} = kT/q(ln(I_{sc}/I_0) = 0.589V$	[4]	Application	Medium	4
			OR				
Q4	a)	Discuss the merits and demerits of solar photovoltaic system.	3 Merits - 3 M 3 Demerits - 3M	[6]	Knowledge	Low	4
	b)	Discuss four parameters of a battery suitable for storing electrical energy generated by a solar photovoltaic system.	4 parameters - 4M	[4]	Compre- hension	Medium	4
	c)	12 solar cells are connected in series in a solar panel. Two such solar panels are connected in parallel in a solar array. Each solar cell has $V_{oc} = 0.59V$ and $I_{sc} = 3A$. Calculate the V_{oc} and I_{sc} of the array.	$V_{oc} = 0.59 \text{ V} \times 12 = 7.08 \text{ V}$ 2M $I_{sc} = 3 \text{ A} \times 2 = 6 \text{ A}$ - 2M	[4]	Application	Medium	4