Paper Code - U127-105A (RE-F&FF)

Total No. of Questions - [5]

Total No. of Printed Pages 6

TUNE 2018 / RE-EXAM

F. Y. B. TECH. (COMMON) (SEMESTER - II)

COURSE NAME: Engineering Physics

Marking scheme

Course code: ES10175A

(2017 PATTERN)

Time: [2 Hours]

[Max. Marks: 50]

Instructions to candidates:

- 1) Answer Q.1 OR Q.2, Q.3 OR Q.4 and Q.5
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data wherever required

				Marking scheme	Co gn iti ve	D iff ic u lt y	0
Q1	a)	With the help of appropriate diagrams, explain building blocks of laser (i)active medium (ii)Pumping mechanism (iii)optical resonance cavity.	[6]	2M each	U	M	5
	b)	Explain the following characteristics of a laser: i. Directionali ty ii. Intensity iii. Monochrom aticity	[6]	2M each	U	M	5
	c)	Find relative population of two states in a ruby	[4]	$\frac{N_2}{N_1} = e^{\frac{-(E_2 - E_1)}{KT}}$	A	M	5

		laser that produces light of wavelength 6943A° at 300K.	$E_2 - E_1 = h\upsilon = \frac{hc}{\lambda} = \frac{12400}{\lambda} eV$ $= \frac{12400}{6943} = 1.79eV$ $\frac{N_2}{N_1} \Big _{300 K} = e^{\frac{-1.79}{8.61 \times 10^{-5} \frac{eV}{K} \times 300 K}} = e^{-69.3} = 8x10^{-31}$			
		Anna person de a Alla	Sarca seranti	O R		
Q2	a)	Explain with the help of neat diagrams construction and working of CO ₂ laser.	 Diagrams – 2 Construction and working – 4M	U	M	5
	b)	Explain any three applications of lasers in mechanical industry.	 2M each	U	M	5
	c)	A cladding of optical fibro has a glass core of refractive index 1.55.cladding is doped to give fractional refractive index of 0.0005.Find cladding index 8 acceptance angle is surrounding medium is air(refractive index=1)	Fractional refractive index $\Delta = (n_1 - n_2)/n_1$ $0.0005 = (1.55 - n_2)/1.55$ $n_2 = 1.5492$ acceptance angle $\theta_A = \sin^{-1}[(n_1^2 - n_2^2)^{1/2}]/n_0$ $= 2.85^{\circ}$	A	Н	5
Q3	a)	Derive an expression for energy eigen value for "Particle in a rigid box" Give expression for energy difference between the lowest two energy states.	Derivation-4M Lowest energy states difference-2M	U	M	6
	b)	Explain: Fission in U ²³⁵ or the basis of binding energy curve.	 Graph-2M Explanation-2M	U	M	6
	c)	Calculate the energy of the ground state of a proton trapped in an infinite potential well of width L = 2×10^{-14} m. Given mass of proton = 1.67×10^{-27} kg, h = 6.63×10^{-34} Js.	E = $n^2h^2/8mL^2$ = $(6.63\times10^{-34})^2/8\times1.67\times10^{-27}\times 4\times10^{-28}$ = $1.6\times10-13 J = 0.5MeV$	A	M	6

		$= 6.63 \times 10^{-34} \text{Js}.$		CHECKER STOPE STREET, THE	-	155	
					O R		
Q4	a)	Derive Schrodinger's time independent equation.	[6]	6M	U	M	6
	b)	Explain the Quantum mechanical term "wave function Ψ ". What do you mean by $ \Psi ^2$? Give the conditions for a wave function to be well behaved.	[4]	explainΨ- 1M explain Ψ ²-1M conditions-2M	U	H	6
	c)	Find binding energy per nucleon of $_3\text{Li}^{7}$. Given: Mass of neutron(m _n)=1.008665amu Mass of proton(m _p)=1.007276amu Atomic mass=7.04084amu	[4]	Here Li has 3 proton and 4- Neutron Given Data: $m_p=1.007276$ a.m.u. $m_n=1.008665$ a.m.u. and $M_N=7.040484$ a.m.u. Therefore the mass defect is, $\Delta m=(4. m_p+3. m_n)-M_N$ $=(3\times 1.007276+4\times 1.008665)-7.016004)$ =0.040484 a.m.u.	A	L	6
			tunil	• The binding energy of Lithium nucleus is $E_b = \Delta m \times 931.5 \text{ MeV}$			
			Har Line	= 0.040484 x 931.5 MeV = 37.710846 MeV.	4 169		
			in in the second	• The binding energy per nucleon = E _b /A. = 37.710846 /7 = 5.39 MeV.	100		

Q.5Attempt following multiple choice questions:[1x20=20 marks]

				Ans	Cog	Dif	CO
a)	Frequency of follo	owing is less than audible range	[1]	(i)	K	L	1
	(i)Infrasonic	(ii) ultrasonic				STU 1	
	(iii)supersonic	(iv) None of the above					

b)	Intensity of sound from a source at a distance 'r' proportional to	[1]	(ii)	K	M	1
	(i) r (ii) 1/r ²					
	(iii) 1/r (iv) e-r			Ag/	4	
c)		[1]	(i)	K	M	1
	(i)regularly arranged staircase (ii) soft curtains					
	(iii)Padded chairs (iv)open windows		- 21			
d)	Intensity of sound is proportional to	[1]	(i)	K	M	1
	(i) (amplitude) ² (ii) (amplitude) ⁻¹					
	(iii) (amplitude) (iv) none of the above	-			A.	
e)	For a echo to be heard, minimum distance between	[1]	(ii)	K	M	1
	the source of sound & reflecting surface should b					
	(i) 20m		6	100		
	(ii) 17m					
	(iii) 7cm		Day's	100		
_	(iv)None of the above		10.74			
f)	An anti reflection coating (ARC) is used for	[1]	(iv)	K	M	2
	(i) reducing intensity of reflected light					
	(ii) enhancing transmission					
	(iii) increasing efficiency of solar cell (iv) all of the above	¥				
g)	Which of the following materials cannot be used a	[1]	(ii)	K	M	2
	anti-reflection coating for a glass slab					
	(i) MgF ₂ (ii) Cu (iii) TiO ₂ (iv) Al ₂ O ₃					
h)	In a interference pattern due to a thin film,the	[1]	(i)	K	M	2
	fringe width is given by by β =	1-1	(-)			
1	(i) $\lambda/2\mu\theta$ (ii) $\lambda/2\theta$ (iii) $\lambda^2/\mu\theta$ (iv) none of the above	ille		3.		
i)	What is reflectivity of silicon if light is normally	[1]	(i)	K	M	2
	incident from air on silicon? (refractive index of	-				

	Si=3.45, refractive index for air=1)			325		N
	(i) 30.3%					
	(ii) 60%				b.E	
	(iii) 6% (iv) none of the above		V	W		
j)	What should be the thickness of a TiO_2 (μ =1.5) or	[1]	(ii)	U	Н	2
	Si(μ=3.45), so that it does not reflect light of	MARIE .				
	wavelength 5000A°					
	(i) 5000A° (ii) 500A° (iv) none of the above	0.5				
1 \		[1]	(::)	17	N/	2
k)	According to Fermi Dirac distribution, what is the	[1]	(ii)	K	M	3
	probability of finding an electron at T=0K having	0.97	l dy-C-Eu			
	energy E <e<sub>f?</e<sub>					
	(i) 0.5					1
	(ii) 1					
	(iii) 1.5					
	(iv) None of the above					
1)	The barrier potential V _{bi} in a p-n junction diode	[1]	(iv)	K	Н	3
	depends on					
	(i) donor concentration	-	in strong			
	(ii) acceptor concentration (iii) intrinsic charge concentration (iv) All of the above		el mai paristo paristo paristo			
m)	In a forward biased diode, the current increases	[1]	(iii)	U	M	3
	with		10.0	puri		
	voltage,					
	(i) linearly		2017			
	(ii) is constant (iii) exponentialy (iv) polynomial		entai Sile Sile	Pass		
n)	The charge on a n-type semiconductor sample is	[1]	(iii)	A	Н	3
	(i) positive (ii) negative (iii) neutral (iv) none of		57			

	the above	H	gw j			
0)	In reverse biased semiconductor(reverse voltage V_r), the built in potential (V_{bi}) changes as (i) V_{bi} - V_r (ii) V_{bi} + V_r	[1]	(ii)	K	L	3
	(iii) V_{bi}/V_r (iv) all of the above		duoj	dist		
p)	At Open circuit voltage in a solar cell,the total current (I _{total}) in the cell becomes (i) half (ii) zero (iii) negative (iv) Positive	[1]	(ii)	K	L	4
q)	Efficiency of a solar cell η depends on (i) Anti reflection coating of cell (ii) surface texturing of cell (iii) Thickness of solar cell (iv) all (i),(ii)&(iii)	[1]	(iv)	K	M	4
r)	What is maximum Power P_{max} if short circuit current I_{sc} =3.3A ,open circuit voltage V_{oc} =0.614V, FF=0.75 at 27°C? (i)5.1W (ii) 1.52W (iii) 0W (iv) 4.03W	[1]	(ii)	A	M	4
s)	Shot spotting of a solar cell in a module is prevented by using , (i) Blocking diode (ii) Bypass diode (iii) resistor in parallel to the hot spot cell (iv) none of above	[1]	(ii)	K	M	4
t)	If C is the full capacity of a battery & it takes 3hrs for the battery to charge or discharge fully the C rating is i. 0.5C ii. 0.333C iii. 1.5C v. 0C	[1]	(ii)	A	Н	4