Total No. of Questions - [5]

Total No. of Printed Pages: 3

G.R. No.

PaperCode - V127-105A (RE-FfFS)

JUNE 2018 / RE-EXAM

F. Y. B. TECH. (COMMON) (SEMESTER - II)

COURSE NAME: Engineering Physics

Course code: ES10175A

(2017 PATTERN)

Time: [2 Hours]

[Max. Marks: 50]

Instructions to candidates:

- 1) Answer Q.1 OR Q.2, Q.3 OR Q.4 and Q.5
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data wherever required

Q. no.		Question		Distribution		BT	СО
Q1	a)	Explain the construction and working of Carbon-dioxide LASER.	[6]	Construction with figure – 2+1 Working with energy level 2+1	M	K, C	5
	b)	State the characteristics of LASER beam and explain the "Directionality" in details.	[6]	State 4 characteristics – 2M Directionality – 4M	M	K, C	5
	c)	Find the intensity of a LASER beam of 20mW power, having a beam diameter of 2mm.	[4]	$I = P/(\pi d^2/4)$ = 20×10 ⁻³ /(\pi(2×10 ⁻³) ² /4)	L	A	5
Q2	a)	What is a numerical aperture? Derive an expression for it. Show that it is independent of core diameter.	[6]	What is - 1M Derive - 4M Show - 1M	M	K,	5
	b)	State six different applications of LASER and explain any one industrial application of LASER.	[6]	State six – 3M Explain – 3M	M	K, C	5
	c)	An optical fiber has	[4]		M	Α	5

4.1		R.I. of core and cladding as 1.62 and 1.57 respectively. Calculate the acceptance angle for the fiber in water having R.I. of 1.26.		0.19 ¹		101	
Q3	a)	Normalize the wave function $\psi = A\sin(kx)$ for a particle in a rigid box of length L. Plot the wave function and probability density in the ground state and first excited state.		Normalization – 3M Plot – 1+1 Interpret – 1M	M	K, C	6
	b)	Hence interpret the result. Plot the Binding energy curve and discuss its significance with respect to stability of the nucleus.		Plot -1M Discuss - 3M	Н	K, C	6
	c)	What is nuclear fusion? Calculate the energy released in a thermo-nuclear reactor in which 1.0 × 10 ⁻³ kg of Hydrogen is converted to 0.993 × 10 ⁻³ kg of Helium.	[4]	What – 1M $E = \Delta mc^2$	M	A	6
Q4	a)	Explain construction and working of Fission Nuclear reactor.	[6]	Construction and working – 5M diagram 1M	M	K,	6
	b)	Explain properties of matter waves.	[4]	1 M each	M	K,	6
	c)	State and explain any two pros and cons of nuclear energy.	[4]	1M each	М	K, C	6

Q.5 Attempt following multiple choice questions:[1x20=20 marks]

a)	THE TALK DAIR 101 MIS	[1]	i)	M	K	1
b)		[1]	ii)	L	K	1
c)		[1]	ii)	M	K	1
d)	[8] - [8]	[1]	ii)	M	K	1

e)	[1]	ii) M	K	1
f)	[1]	i) M	K	2
g)	[1]	iii) M	A	2
h)	[1]	ii) M	K	2
i)	[1]	ii) H	K	2
j)	[1]	iv) M	K	2
k)	[1]	iv) M	K	3
1)	[1]	iv) M	K	3
m)	[1]	iii) M	K	3
n)	[1]	i) M	K	3
0)	[1]	ii) H	K	3
p)	[1] i	i) M	K	4
q)	[1] i	iv) M	K	4
r)	[1] i	iii) M	K	4
s)	[1] i	i) M	K	4
t)	[1] i	iv) M	K	4

End by a Liber Sile