Paper Code - U127-105 A (RE-Ff FS) JUNE . 2018 / RE-EXAM ## F. Y. B. TECH. (COMMON) (SEMESTER - II) ## **COURSE NAME: Engineering Physics** Course code: ES10175A | | (2017 PATTERN) | ties in | |-----------------------------|--|---| | Time: [2 Hours] [Max. Marks | | larks: 50] | | Ins
1)
2)
3)
4) | Answer Q.1 OR Q.2, Q.3 OR Q.4 and Q.5 Figures to the right indicate full marks. Use of scientific calculator is allowed | | | Q1 | b) State the characteristics of LASER beam and explain | | | | c) Find the intensity of a LASER beam of 20mW power, have beam diameter of 2mm. | ring a [4] | | Q2 | 2 a) What is a numerical aperture? Derive an expression for it. Sh | 10w [6] | | | b) State six different applications of LASER and explain any one | [6] | | | c) An optical fiber has R.I. of core and cladding as 1.62 and | | | Q3 | box of length L. Plot the wave function and probability dense
the ground state and first excited state. Hence interpret | sity in | | | | with [4] | | | c) What is nuclear fusion? Calculate the energy released | in a [4]
en is | | Q4 | b) Explain properties of matter waves. | [6]
[4]
[4] | | | II 1) 2) 3) 4) Q | Instructions to candidates: Answer Q.1 OR Q.2, Q.3 OR Q.4 and Q.5 Figures to the right indicate full marks. Use of scientific calculator is allowed Use suitable data wherever required Q1 a) Explain the construction and working of Carbon-dioxide LAS b) State the characteristics of LASER beam and explain "Directionality" in details. c) Find the intensity of a LASER beam of 20mW power, have beam diameter of 2mm. OR Q2 a) What is a numerical aperture? Derive an expression for it. State six different applications of LASER and explain any one industrial application of LASER. c) An optical fiber has R.I. of core and cladding as 1.62 and respectively. Calculate the acceptance angle for the fiber in having R.I. of 1.26. Q3 a) Normalize the wave function ψ = Asin(kx) for a particle in a box of length L. Plot the wave function and probability dens the ground state and first excited state. Hence interpreresults. b) Plot the Binding energy curve and discuss its significance respect to stability of the nucleus. c) What is nuclear fusion? Calculate the energy released thermo-nuclear reactor in which 1.0 × 10-3 kg of Hydrog converted to 0.993 × 10-3 kg of Helium. Q4 a) Explain construction and working of Fission Nuclear reactor. | | [1] | |-----| | | | | | [1] | | | | | | [1] | | 200 | | | | [1] | | | | | | [1] | | [+] | | | | [1] | | [1] | | | | | | [1] | | | | | | [1] | | | | | | [1] | | | | [1] | | [1] | | | | | | k) | The energy gap between valance band and conduction band is called | [1] | |----|--|-----| | | i) Fermi energy ii) solar energy | | | | iii) nuclear energy iv) band gap energy. | | | 1) | Silicon and Germanium are sensitive to i) microwave radiations ii) infrared radiations iii) heat radiations iv) all of the above. | [1] | | m) | i) Insulator ii) Semiconductor
iii)conductor iv) all of the above | [1] | | n) | Fermi function says about distribution of electrons over | [1] | | | allowed range of | | | | i) energy ii)temperature | | | | iii) time iv)none of the above | | | 0) | Given that band gap energy of Silicon and Germanium is 1.1eV and 0.7eV, respectively, implies that | [1] | | | i) conductivity of Silicon is more than conductivity of Germanium.
ii) conductivity of Silicon is less than conductivity of Germanium.
iii)conductivity of Silicon is equal to conductivity of Germanium.
iv)none of the above. | | | p) | The Fill factor of solar cell is equal to | [1] | | | i)Vm.Im/Voc.Isc ii) Voc.Isc / Vm.Im
iii) Vm.Im iv) Voc.Isc | | | q) | Solar cells have become popular because | [1] | | | i)solar energy is freely available ii)rechargeable | | | | iii)no pollution at the place of generation. iv)all of the above. | | | r) | To increase power o/p from solar cell, they are to be connected in i)series ii)parallel iii)hoth i) and ii) iv)pana of the above | [1] | | | iii)both i) and ii) iv)none of the above. | [1] | | s) | The working principle of Solar cell is i) photovoltaic effect. ii) photoconductive effect. iii) photo emissive effect iv) none of the above. | [1] | | t) | The mismatch of solar cells may result into | [1] | | | i) heating effect ii) producing hot spots | | | | iii)damaging the cell iv) all of the above | |