G.R. No. Paper Code - V127-104B CESE)

MAY 2018/ ENDSEM

F. Y. B. TECH. (COMMON) (SEMESTER - II)

COURSE NAME: BASIC ELECTRICAL ENGINEERING

COURSE CODE: 10174B

(2017 PATTERN)

Time: [2 Hours] [Max. Marks: 50]

- (*) Instructions to candidates:
- 1) Answer Q.1 OR Q.2, Q.3 OR Q.4 and Q.5.
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed.
- 4) Assume suitable data wherever required.
- Q.1) a) A 8 pole wave wound DC shunt motor has 400 conductors and draws a line current of 12 A from the supply. Its field winding takes a current of 2 A. If the flux per pole is 0.05 Wb, calculate the torque developed by an armature and speed of the motor if the back emf developed by motor is 200 V. [6]
- b) Draw and explain torque-armature current, speed-armature current and speed-torque characteristics of a dc shunt motor.
- c) Explain function of commutator and brushes in D.C. Generator and state material used for these components. [4]

OR

- Q.2) a) Derive the torque equation of a dc motor with usual notations. [6]
- b) A 4 pole wave connected DC shunt generator has 600 armature conductors and runs at 1200 rpm. This generator has a flux per pole of 6 mWb. Calculate i) the emf induced in the above dc generator ii) Find the speed at which it should be driven to produce the same emf when lap connected
- c) State any two significant applications of i) dc shunt motor ii) dc series motor. [4]

	e.o, a, 11 o pole, o phase squirrer eage induction motor operates from a 40	o v unec
	phase ac supply whose frequency is 50 Hz. Calculate:	[4]
i i	i. Synchronous speed of the motor	
	ii. Speed of the motor when the slip is 0.04	
	iii. Frequency of the rotor current when the slip is 0.03	
	iv. Frequency of the rotor current at standstill	
	b) State any two applications of i) squirrel cage and ii) slip ring three phase	induction
	motors.	[4]
	c) Write a note on resistance split phase single phase induction motor with	respect to
	the following points: i) Neat circuit diagram with proper labels ii) Advanta	iges
g H	iii) Disadvantages iv) Applications	[6]
	OR	
	Q4) a) A three phase slip ring induction motor is wound for 4 poles and	is supplied
	from 415 V, 50 Hz three phase ac supply. Calculate:	
	i. Synchronous speed	
	ii. Rotor speed, when slip is 8%	
	iii. Rotor frequency and percentage slip when rotor runs at 1200 rpm	[4
	b) Draw torque-slip characteristics of three phase induction motor and indi	cate
	starting torque and full load torque on it.	[4]
	c) Explain why single-phase induction motor is not self-starting. How is	it made
	self-starting? State any two types of single-phase induction motor.	[6]
	Q.5) Attempt following multiple choice questions: [10x2=20 marks]	
		(, ,
	a) For a series R-L circuit if R is 20 Ω , X_L is 15 Ω then power factor of this	circuit
	will be:	[2]
	i. 0.8 leading	
	ii. zero lagging	
	iii. 0.8 lagging	
	iv. zero leading	

b) For a series R-C circuit if R is 8 Ω , C is 0.05 F and supply frequency is 50 Hz then total impedance Z of this circuit in Ω will be:

i. 8 + j 0.064

ii. 8 - j 0.064

iii. 8 - j 15.70

iv. 8 + j 15.70

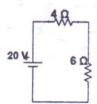
c) According to Kirchhoff's voltage law in any closed loop of a network

[2]

i. The algebraic sum of all the e.m.f.s is zero

- ii. The algebraic sum all the voltage drops is zero
- iii. The algebraic sum of all e.m.f.s and voltage drops is zero
- iv. The algebraic sum of all currents is zero
- d) For a single phase A.C. circuit if the supply voltage is 200 V, current is 2 A and phase angle Φ is 90° then the reactive power will be

i. 400 VAR


ii. Zero

iii. 57.5 VAR

iv. 92 VAR

e) Find voltage drop across 6Ω resistance in the following circuit.

[2]

i. 20 V

ii. 10 V

iii. 27 V

iv. 12 V

i) Th	ie t	transformation ratio of a single phase 200 V/100 V,	1KVA
tra	ansf	former is	[2]
	i.	1	
	ii.	1.15	
	iii.	2	
	iv.	0.5	
g) In	a th	nree phase symmetrical AC circuit, the phasor sum of all th	ree voltages at
		nstant is:	[2]
	i.	infinity work against an account of the same and a same account of the same account of	o main people.
	ii.	zero e lov bus sil, si a tis to a dis sisse sulla si	Mar
	iii.	one one as attended the rules attended by only at	
- 122	iv.	none of the above	
h) A tr. Wb. If su	ans	sformer has 70 turns on secondary and maximum flux in c ly frequency is 60 Hz, induced e.m. f. in secondary will be:	ore is 0.06
i ii. iii. iv.		932.4 V 1118.88 V 1776 V 1276 V	
i) Full lo will be:	oad (Copper loss of a transformer is 1000 W. At half load, the c	opper loss
	i. 5	500 W	18. 11. 1
i	ii.	1000 W	
i	iii. 2	250 W	
i	iv. 4	4000 W	
j) The t	Bo	wattmeter method is applicable for measurement of power oth star connected and delta connected balanced load.	in [2]
ii.	On	nly delta connected unbalanced load.	
iii.	Bot	th star connected and delta connected balanced and	unbalanced
	loa	ad.	
iv.	No	ne of these.	