MAY 2018 / ENDSEM

F. Y. B. TECH. (COMMON) (SEMESTER - II)

COURSE NAME: Basic Electronics Engineering

(2017 PATTERN)

Paper code - U127-104A (ESE)

Q.NO	Sub Q.NO	Marking Scheme	Marks	Difficulty Level	Cognitive level	CO Mapped
Q1	a)	State Demorgan's theorems,: 2M Prove Demorgan's theorems,: 2M	[6]	L	Knowledge/ Comprehension	CO4
		Draw the logical diagrams.: 2M				
	b)	What is Multiplexer:2M Draw 4:1 multiplexer:2M Develop logical expression for the output:2M	[6]	M	Comprehension	CO4
	c)	Explanation for the reasons of digital technology is preferred over analog technology: 4M	[4]	M	Comprehension	CO4
		OR			als by	
Q2	a)	Commutative law using logic expressions:2M Associative law using logic expressions:2M Distributive law using logic expressions:2M	[6]	L	Knowledge	CO4
	b)	Convert binary number 110110.1011 to decimal number 54.6875 : 3M Convert decimal number 82.625 to binary number is 1010010.101:3M	[6]	Н	Comprehension /Application	CO4
	c)	Using basic logic gates implement the following logical expressions 1) $X = A\overline{B} + AB$ 2M 2) $X = \overline{ABC} + B(EF + \overline{G})$:M	[4]	M	Comprehension	CO4
02	a)	What is PTD 114	[6]	M	Kanada da	005
Q3	a)	What is RTD:1M Construction and working principle: 3M.	[6]	M	Knowledge	CO5

MAY 2018 / ENDSEM

F. Y. B. TECH. (COMMON) (SEMESTER - II)

COURSE NAME: Basic Electronics Engineering (2017 PATTERN)

		Circuit diagram for measurement of temperature using RTD:2M				Ga o
	b)	What is strain gauge: 1M How it is used to measure weight:3M	[4]	L	Knowledge	CO5
	c)	Explanation of four characteristics of transducer: 4M	[4]	L	Knowledge	CO5
		OR	Vie al			
Q4		10	161	134	- L. L. L	COF
QT	(a)	Construction diagram of thermistor:2M Explain the working principle of it:4M	[6]	M	Knowledge and Comprehension	CO5
Ų,	b)		[4]	L		COS

Q.5

1.	Three LED's are connected in series along with limiting resistance. It is supplied with 12 V DC, current flowing through LED is 20mA and drop across each LED is 2.5V, the value of limiting resistance will be a) 200Ω b) 250Ω c) 225Ω d) 300Ω Ans: c	[2]
2.	The voltage across Zener diode remains constant when operated	[2]
	a) Below Iz min b) between Iz min and Iz max c) in forward biased d) None of the above Ans: b	
3.	A properly biased single stage transistor amplifier has gain of 56 and dynamic emitter resistance of 10 Ω, the collector resistance will be a) 56 Ohm b) 560 Ohm c) 5.6 K Ohm d) 10 Mho. Ans: b	[2]
4.	V_{CE} approximately equals when a transistor is in saturation state.	[2]

MAY 2018 / ENDSEM

F. Y. B. TECH. (COMMON) (SEMESTER - II) COURSE NAME: Basic Electronics Engineering (2017 PATTERN)

5.	Ideal op-amp has CMRR andinput offset voltage	[2]
	a) infinity, zero b) infinity, infinity c) zero, zero d) zero, infinity	-
_	Ans: a In inverting amplifier R_F =50K Ω and R_1 =2K Ω then the close loop gain	[2
6.		12
	of amplifier is	
	a) -25 b) 26 c) -52 d) 100	
	Ans: a	
7.	In Non inverting comparator, the output of comparator will be at	[2
	when it's input voltage is greater than reference voltage i.e $V_{ref}=1V$.	
	10 11 12 11 11 11 11 11 11 11 11 11 11 11	
	a) negative saturation b) positive saturation c) zero volt d) 1 volt	
	Ans: b	
8.	For SCR with firing angle of α =0, the DC voltage at the output of full	[2
	wave controlled rectifier is	
	a) Vm/π b) $2Vm/\pi$ c) $Vm/2\pi$ d) 0	
0	Ans: b For n channel E-MOSFET, if V _{GS} =5V, Vth=1V and K=6.17mA/V ² the	[2
9.		L
	drain current is	
	a) 95mA b) 90.18mA c) 98.7mA d) 101.24mA	
	Ans: b	
10		[2
10.	The output of a particular op-amp increases 10V in 16µs. The slew	12
	rate is	13
	a) $62.5V/\mu s$ b) $0.625V/\mu s$ c) $1.5V/\mu s$ d) none of these	100
	Ans: b	1