Total No. of Questions - [5]

Total No. of Printed Pages: 5

G.R. No.	design terms

Paper Code-U127-105A (ESB)

May 2018 / END SEM

F. Y. B. TECH. (COMMON) (SEMESTER - II)

COURSE NAME: Engineering Physics

Course code: ES10175A

(2017 PATTERN)

Time: [2 Hours]

[Max. Marks: 50]

Instructions to candidates:

- 1) Answer Q.1 OR Q.2, Q.3 OR Q.4 and Q.5
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data wherever required

Q. n	0.	Question	Ma rks	Distribution	DL	ВТ	СО
Q1	a)	With the help of energy level diagrams, explain the pumping mechanisms for a) CO ₂ laser and b) Single hetero-junction diode laser.		a) 3M - 1M-diagram, 2M explanation b) 3M - 1M-diagram, 2M explanation	M	K, C	5
	b)	Explain any three advantages of laser based surgery as against conventional surgery.	[6]	2M each	M	K, C	5
	c)	If light is incident through water $(n_0 = 1.33)$ onto an optical fibre which has refractive indices of $n_1 = 1.55$ and $n_2 = 1.5$ for the core and the cladding, respectively. Calculate the maximum acceptance angle.	[4]	$\theta_0 = \sin^{-1}\left(\frac{\sqrt{n_1^2 - n_2^2}}{n_0}\right)$ = 17.07 degrees	M	A	5
			1447	OR			
Q2	a)	Derive an expression for numerical aperture	[6]	Diagram - 1 M Derivation – 5M	M	K, C	5

		of an optical fibre in					
		terms of n ₀ , n ₁ and n ₂ , the refractive indices of medium of incident	100				
		light, core and cladding, respectively. Draw appropriate diagram.		Verox sess	ì		
	b)	Why is a laser monochromatic, coherent and intense. Explain in detail with the help of appropriate diagram(s).	[6]	2M each	Н	K,	5
	c)	Calculate the coherence length for Kr orange line with wavelength $\lambda = 6058$ Å and a line width of $\Delta\lambda = 0.00550$ Å in a medium with refractive index 1.5.	[4]	$l_{coh} = \frac{\lambda^2}{\mu \Delta \lambda} = \frac{6058^2 \times 10^{-10}}{1.5 \times 0.0055} = 0.445m$	M	A	5
Q3	a)	Derive Schrodinger's time independent equation.	[6]	6 M in totality	M	K,	6
	b)	Explain the role of moderator and control rods in a Nuclear reactor.	[4]	2M each	M	K, C	6
	c)	Calculate the ground state energy and momentum of a proton confined to a rigid box of dimensions $L=4.5 \times 10^{-14}$ m. Given, $h=6.63 \times 10^{-34}$ Js and $m_p=1.67 \times 10^{-27}$ kg.	[4]	$E = \frac{n^2 h^2}{8mL^2}$ $= \frac{1 \times (6.63 \times 10^{-34})^2}{8 \times 1.67 \times 10^{-27} (4.5 \times 10^{-14})^2}$ $= 0.163 \times 10^{-13} J$ $= 0.102 \times 10^6 \text{ eV} = 0.102 \text{ MeV}$ $P = \sqrt{2mE} = 7.37 \times 10^{-21} \text{ kgm/s}$	L	K, C	6
			The real	OR			
Q4	a)	Discuss fission of a nucleus on the basis of liquid drop model with the help of a diagram.	[6]	Diagram – 1M Discussion – 5M	M	K, C	6
	b)	Write the expression for the energy of a particle in a rigid box. Discuss any three quantum mechanical characteristics of this	[4]	Expression – 1M Three points – 1M each	M	K, C	6

	equation in comparison with classical Mechanics.	of president streets			
(3	If energy released per fission of U ²³⁵ nucleus is 200MeV, calculate the mass of U ²³⁵ required, to generate 7000MWh electric energy. Assume reactor efficiency of 35%.	 $\eta = \frac{Electrical\ energy\ \left(\frac{o}{P}\right)}{Nuclear\ energy\ \left(\frac{l}{P}\right)}$ Nuclear energy = 7000/0.35 = 20000MWh Energy released /fission = 200MeV No. of U235 nuclei required = $\frac{20000 \times 10^6 \times 3600}{200 \times 10^6 \times 1.6 \times 10^{-19}} = 2.25 \times 10^{24}$ Mass of U = $\frac{2.25 \times 10^{24} \times 235}{6.023 \times 10^{23}}$ = 877.89 gm	Н	K, C	6

Q.5 Attempt following multiple choice questions:[1x20=20 marks]

a)	Principle of echo is used in	[1]	(iv)	M	K	1
	(i) SONAR (ii) measurement of position of			EC. '		
	fault in a solid	HO.				
	(iii) Ranging (iv) all of the above					
b)	Intensity level of sound I _L is given by	[1]	(iii)	M	K	1
	(i) 10ln(I/I ₀) (ii) 1/10ln(I/I ₀) (iii) 10log ₁₀ (I/I ₀) (iv)	- 179	417	The state of		
	$1/10\log_{10}(I/I_0)$	FRI	DOI.	uff)		
c)	Pitch of sound depends on its	[1]	(iv)	M	K	1
	(i) intensity (ii) intensity level (iii) power (iv) frequence					
d)	Reverberation time decreases with	[1]	(ii)	M	K	1
	(i) increase in intensity of sound (ii) increase in absorption of sound					
	(iii) decrease in the pitch of sound				m	
	(iv) decrease in the frequency of sound					
e)	Sound with frequency more than 20,000 Hz is called	[1]	(i)	M	K	1
	(1) 771					
	(i) Ultrasound (ii) Infrasound (iii) hypersound (iv) supersound		110		10	
f)	In the fringe pattern from a thin wedge shaped film,	[1]	(iii)	M	K	2
	the path difference between two consecutive dark fringes is		han!			
	(i) $\lambda/2$ (ii) 2λ (iii) λ (iv) $\lambda/4$					
g)	Anti-reflection coating works on the principle of	[1]	(ii)	M	K	2
	(i) constructive interference in reflection					
	(ii) destructive interference in reflection					

	(iii) destructive interference in transmission		LL T			Г
	(iv) none of the above					
h)	For 0 th principal maximum in Fraunhofer diffraction from a diffraction grating (i) angle of occurrence θ is zero (ii) dispersion is zero (iii) resolution is zero (iv) all of the above	[1]	(iv)	M	K	2
i)	For Fresnel diffraction (i) source is at infinite distance (ii) convex lenses are required (iii) diffracted beam has a plane wave front (iv) none of the above	[1]	(iv)	M	K	2
j)	A soup bubble looks coloured when viewed in white light because of (i) diffraction (ii) interference (iii) absorption (iv) refraction	[1]	(ii)	M	K	2
k)	Built in potential in a p-n junction diode depends on (i) temperature (ii) impurity concentration on the p-s: (iii) impurity concentration on the n-side (iv) all of the above	(13)	(iv)	M	K	3
1)	The discrete energy levels due to pentavalent impurities are in (i) conduction band (ii) valence band (iii) forbidden gap (iv) none of the above	[1]	(iii)	M	K	3
m)	In an extrinsic semiconductor, where n_i , n and p is intrinsic charge carrier density, electron density and hole density, respectively: (i) $n_i^2 = n/p$ (ii) $n_i^2 = np$ (iii) $n_i^2 = np/2$ (iv) $n_i^2 = \sqrt{(np)}$	[1]	(ii)	M	K	3
n)	Fermi energy of an intrinsic semiconductor is at the centre of (i) conduction band (ii) valence band (iii) forbidden band (iv) none of the above	[1]	(iii)	M	K	3
0)	Effective mass of a charge carrier in a solid is proportional to (i) $\frac{\partial^2 E}{\partial k^2}$ (ii) $1/\frac{\partial^2 E}{\partial k^2}$ (iii) $\frac{\partial E}{\partial k}$ (iv) $1/\frac{\partial E}{\partial k}$	[1]	(ii)	M	K	3

p)	Conversion of light into electric energy by a solar cell is because of	[1]	(ii)	M	K	4
	(i) photo-electric effect (ii) photovoltaic effect (iii)					
	photo-conduction (iv) photo-synthesis	F = 1	/***	2.6	77	1
q)	Air mass of sun light incident at an angle θ with resp	[1]	(iii)	M	K	4
	normal is defined as					
	(i) $\cos\theta$ (ii) $\sin\theta$ (iii) $1/\cos\theta$ (iv) $1/\sin\theta$					
r)	The absorption length or absorption depth for Si is	[1]	(iii)	M	K	4
	largest for					
	(i) UV light (ii) visible light (iii) Infrared light (iv) X-ra					
s)	Fill factor for a solar cell is less than one because of	[1]	(iii)	M	K	4
	(i) series resistance R _s (ii) parallel resistance R _p (iii)					
41	both R _s and R _p (iv) none of the above	[1]	(iv)	M	K	4
t)	Solar energy is not completely green because of		(14)	141	1.	
	(i) high energy required for manufacturing solar pane					
	(ii) low efficiency			-34	-	
	(iii) necessity to use batteries for storage of electric					
	power					
	(iv) all of the above					-