TAM 2118

Total No. of Questions - [4]

Total No. of Printed Pages :2

G.R. No.

Paper Code: - U127-101 (T1)

FEBRUARY 2018 / IN - SEM (T1) F. Y. B.TECH. (COMMON) (SEMESTER - II) COURSE NAME: Engineering Mathematics-II (2017 PATTERN)

Time: [1 Hour]

[Max. Marks: 30]

(*) Instructions to candidates:

- 1) Answer Q.1 OR Q.2, Q.3 OR Q.4
- 2) Figures to the right indicate full marks.
- 3) Use of scientific calculator is allowed
- 4) Use suitable data where ever required

Q 1) a) Solve:
$$\frac{dy}{dx} + x \sin 2y = x^3 \cos^2 y$$
 [6]
b) Find orthogonal trajectory for $r = a (1 + \cos \theta)$

c) Solve:
$$\left(\log(x^2 + y^2) + \frac{2xy}{x^2 + y^2}\right) dx + \frac{2xy}{x^2 + y^2} dy = 0$$
 [4]

OR

Q2) a) Solve:
$$e^y \left(1 + \frac{dy}{dx}\right) = e^x$$
 [6]

b) The equation of an L-R circuit is given by $L\frac{dI}{dt} + RI = 10$ sint.

If
$$I = 0$$
 at $t = 0$, express I as a function of t . [6]

c) Solve:
$$\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$$
 [4]

Q3) a) Find Fourier series for
$$f(x) = x \sin x \text{ in } (-\pi, \pi)$$
 [6]

b) Find half range sine series
$$f(x) = x$$
 if $0 < x < \pi/2$.

$$= \pi - x \quad \text{if } \pi/2 < x < \pi. \tag{4}$$

Q4) a) Find Fourier series for $f(x) = \sin x$ if $0 < x < \pi$

[6]

 $= 0 \qquad \text{if } \pi < x < 2\pi$

b)Obtain the constant term and the coefficients of first cosine and sine harmonics in the expansion of y from table.

[4]

X	0	1	2	2	1	
		1	4	3	4) 5
V	9	18	24	20	26	20

c) The distance x descended by a parachuter satisfies the differential equation $v\frac{dv}{dx} = g\left(1 - \frac{v^2}{k^2}\right)$ where v is velocity, k, g constants. If v = 0 and x = 0 at time t = 0, show that $x = \frac{k^2}{g}\log\cosh\left(\frac{gt}{k}\right)$. [4]

ALL THE BEST

515