FEBRUARY 2018 / IN - SEM (T1) F. Y. B.TECH. (COMMON) (SEMESTER - II) (2017 PATTERN) COURSE NAME: Engineering Mechanics

Model Answers and Scheme of Marking.

Examiners are requested to please verify the calculations before starting assessment

Q. (1)

(a) Here Rx = 0, and Ry = R (downward) ... 1 mark

 $Rx = P \sin \alpha - 80 \sin 35^{\circ} OR P \sin \alpha = 45.89 N \dots 1 \text{ mark}$

But $R = P \cos \alpha + 80 \cos 35^{\circ}$... 1 mark

For R minimum; $\cos \alpha = 0$ OR $\alpha = 90^{\circ}$ i.e. P must be acting to the right. ... 1 mark

P =45.89 N ... 1 mark

R = 65.53 N ... 1 mark [Total 6]

(b) Rx = -40 kN, Ry = -80 kN ... 1 + 1 marks

 $R = 89.44 \text{ kN at } 63.4^{\circ} \dots 1 \text{ mark}$

Intersects at 0.43 m to the right of origin and 0.86 m above the origin ... 3 marks [Total 6]

(c) $R = 4 \text{ kN} \uparrow \dots 1 \text{ mark}$

Assume R as shown (Sketch) ... 1 mark

VTM about point A gives (4)x = 4(6) - 1.5(8) - 2.5(4) ... 1 mark

Or x = 0.5 m to the right of A ... 1 mark [Total 4]

OR

Q.(2)

(a) Here Rx = 0 and $Ry = R = 5.59 \text{ kN} \uparrow \dots 1 \text{ mark}$

Hence P $\cos \Theta + 18 \cos 60 = 24$ 1 mark

and P $\sin \Theta + 18 \sin 60 - 20 = 5.59$ 1 mark

Solving, we get $P \approx 18 \text{ kN}$ and $\Theta \approx 33.7^{\circ} \dots 3 \text{ marks}$ [Total 6]

(b) $A_1 = -(0.5) \pi (20)^2 = -628.31 \text{ mm}^2$;

 $x_1 = 27 \text{ mm}, y_1 = 40 - [4(20)/3\pi] = 31.51 \text{ mm},$

 $A_2 = -35 (13) = -455 \text{ mm}^2$

 $x_2 = 47 + (35/2) = 64.5 \text{ mm}, y_2 = 6.5 \text{ mm},$

 $A_3 = (47+35)(40) = 3280 \text{ mm}^2$

 $x_3 = (47+35)/2 = 64.5$ mm, $y_3 = 20$ mm, Total 4 marks

Hence $\bar{x} = 40.14$ mm and $\bar{y} = 19.50$ mm 1+1 marks

[Total 6]

(c) Maximum moment of the force about A will occur only when the force acts at right angles to line AC.... 1 mark

Sketch 1 mark OR From geometry, tan(ACB) = 0.5/0.3. Hence $ACB \approx 59^0 \dots 1$ mark

But $\Theta = 180^{0} - 59^{0}$. Hence $\Theta = 121^{0} \dots 1$ mark

Mmax = (AC) (300) = (0.58)(300) = 174.93 N.m clockwise 1 mark [Total 4]

Q.(3)

(a)Correct FBD of beam ... 2 marks; Using $\sum M_A = 0$, $R_B = 44.4$ kN \downarrow ... 2 marks

 $\Sigma F_v = 0 \text{ OR } \Sigma M_B = 0 \text{ gives } V_A = 8.4 \text{ kN} \downarrow ... 1 \text{ mark}$

 $\Sigma F_x = 0$ gives $H_A = 12 \text{ kN} \rightarrow ... 1 \text{ mark}$ [Total 6]

(b)FBD of cylinder 2 marks; Lami's theorem OR arithmetical conditions of equilibrium ($\sum F_x = 0$, $\sum F_y = 0$)

For the point of contact on the right $R_1 = 300 \text{ N}$ at $54^0 \dots 1 \text{ mark}$

For the point of contact on the left R_2 = 185.41 N at 18^0 ... 1 mark

[Total 4]

(c) $F_1 = -0.440 \text{ i} -0.176 \text{ j} -0.880 \text{ k}, F_2 = -0.716 \text{ i} -0.537 \text{ j} -1.789 \text{ k}, and$

 $F_3 = -0.497 i + 0.497 j - 1.657 k$

...2 marks

 $\mathbf{R} = -0.222 \text{ i } -0.216 \text{ j } -4.326 \text{ k}, \ \mathbf{R} = 4.337 \text{ kN}; \ \text{Direction angles: } 92.9^{\circ}, \ 92.9^{\circ}, \ \text{and } 175.9^{\circ}...2 \ \text{marks}$

[Total 4]

OR

Q.(4)

(a) Writing all forces as vectors correctly as follows:

 $T_{AD} = -0.28 T_{AD} j -0.96 T_{AD} k$, $T_{BD} = 0.231 T_{BD} i + 0.308 T_{BD} j -0.923 T_{BD} k$,

 T_{CD} = -0.429 T_{CD} i + 0.286 T_{CD} j -0.857 T_{CD} k, and F = 1500 k ... 3 marks

 T_{AD} = 833.75 N, T_{BD} = 505.31 N, T_{CD} = 272.11 N ... 3 marks [Total 6]

(b)R = 150 N along + Z direction ... 1 mark

Let R act at (\bar{x}, \bar{y}) ... Sketch 1 mark

VTM about Y axis gives $\bar{x} = 0.357 \text{ m} \dots 1 \text{ mark}$

VTM about X axis gives $\bar{y} = 0.25 \text{ m} \dots 1 \text{ mark}$ [Total 4]

(c) Correct expl. with sketches of

Simple Support, Hinged Support, Roller Support, and Fixed Support: 1 mark each [Total 4]

Prof. (Dr.) Suhas Nitsure, Course Coordinator