F. Y. B.TECH. (COMMON) (SEMESTER - II)

COURSE NAME: Engineering Chemistry

(2017 PATTERN)

		(2017 INTERM)		
Time: [1 Hour] [Max. Marks:				
(*) I 1) 2) 3) 4)	Answ Figur Use o	er Q.1 OR Q.2, Q.3 OR Q.4 es to the right indicate full marks. f scientific calculator is allowed uitable data where ever required		
Q.1)	a)	i) Define GCV and NCV ii) A sample of coal contains: C= 92%, H = 6% and ash = 2%. The following data	[6]	
		were obtained when above coal was tested in bomb calorimeter:		
		Weight of coal burnt = 0.9 gm		
		Weight of water taken = 546 gm		
		Water equivalent of bomb calorimeter = 2250 gm Rise in temperature = 2.4 °C		
		Acid correction = 50 cal		
		Fuse wire correction = 15 cal		
		Calculate GCV and NCV assuming latent heat of condensation of steam as 587 cal/gm		
	b)	Define cetane number. Explain cetane number determination with example. Explain effect of chemical structure on cetane number. Explain improvement of cetane number.	[6]	
	c)	Analysis of a fuel gave C=85%, $H = 3\%$, $O = 1.5\%$, $S = 0.5\%$, $H_2O = 0.2\%$, $N = 0.6\%$ and remaining ash. Calculate minimum weight of air required for complete combustion of 1 kg of fuel.	[4]	
		(1)		

•)	0.6% and remaining ash. Calculate minimum weight of air required for complete combustion of 1 kg of fuel.	[4]
	OR	
a)	Give 6 difficulties in storage and transportation of hydrogen	[6]
b)	Define power alcohol. Give 3 advantages and 3 disadvantages of power alcohol.	[6]
c)	Volumetric analysis of producer gas used as a fuel is as, $H_2 = 20\%$, $CO = 18\%$, $N_2 = 50\%$, $CH_4 = 2\%$, $CO_2 = 10\%$. If 25% excess air is used, find the volume of air actually supplied per m ³ of the gas.	[4]

Q.3)	a)	Define crystallinity of polymers. Explain any five factors affecting on it.	[6]
	b)	Give four points of differences between thermosetting and thermosoftening polymer.	[4]
	c)	Define functionality of monomer. Explain bifunctional, trifunctional and tetrafunctional monomers with examples.	[4]

Q.2)

			10
Q.4)	a)	Define liquid crystal polymers. Explain thermotropic and lyotropic liquid crystal polymers with example. Give two applications of liquid crystal polymers.	[6]
	b)	Define glass transition temperature. Discuss the effect of side groups, intermolecular forces and molecular weight on Tg of polymer.	[4]
	c)	Compare suspension polymerization and emulsion polymerization techniques	[4]

A.0 510 6.9 6.9 80 1.9 rweek

VOM are 1000 ented if

2 b.5 = lenter represent of the 2

an actually tappling per collection on