March 2018 / IN - SEM (T2) F. Y. B.TECH. (COMMON) (SEMESTER - II) COURSE NAME: Engineering Physics COURSE CODE: ES 10175A (2017 PATTERN)

Paper Code - U127-105A (T2)

Marking scheme

Q. no.	Question	Ma rks	Distribution	DL	BT	СО
Q1(a)	Define Fermi level for a semiconductor. What is Fermi-Dirac probability distribution function? Explain the terms used in it. Show that the probability of finding an electron with energy $E_F+\Delta E$ is equal to the probability of absence of an electron with energy $E_F-\Delta E$.	[6]	Definition – 1M FD – 1M Terms – 1M Derivation – 3M	M	K, C	3
Q1(b)	Draw the energy level diagram for an unbiased p-n junction diode at equilibrium. Explain the formation of built in potential on the basis of charge re-distribution in both regions. Derive the expression for built in potential (V _{bi}) for a p-n junction diode.	[6]	Diagram – 1M Explanation – 1M Derivation – 4M	M	K, C	3
Q1(c)	Find E_F - E_{Fi} for an n-type semiconductor if the doping concentration is $N_D = 2.1 \times 10^{15}$ /cm ⁻³ . Given $n_i = 2.4 \times 10^{13}$ /cm ⁻³ at 300K. Boltzmann constant $k = 8.6 \times 10^{-5}$ eV/K. How far is E_F from E_C if the band gap is 0.7 eV for Ge?	[4]	E_{F} - E_{Fi} = $kTln(N_D/n_i)$ 0.115eV E_{C} - E_{F} = 0.115+0.35 =0.235eV	M	A	3
Q2(a)	Given density of states $g_c(E) = \frac{4}{\sqrt{\pi}} \left[\frac{m_e^*}{2\pi h^2} \right]^{3/2} (E - E_c)^{1/2}$ for $E \ge E_c$, derive an expression for electron density 'n' in the conduction band.	[6]	6M	M	K,	3
Q2(b)	Starting from the expression for current through a diode, obtain expressions for current in forward and reverse bias. Explain with help of band diagram, I-V characteristics for a diode.	[6]	Forward and reverse current– 1M each Forward and reverse explanation – 2M each	L	A, K	3
Q2(c)	Find the probability of finding an electron 0.15eV above and 0.15eV	[4]	$f = 1/(1+e^{(E-E_F)/kT})$ =0.00298 1-f = 0.997	M	A	3

	below the Fermi energy at 300K, Given, $k = 8.6 \times 10^{-5} \text{ eV/K}$.		COURT V CO LEED			
Q3(a)	Starting from the ideal diode equation, obtain expressions for short circuit current I _{sc} and open circuit voltage V _{oc} . Give the expression for fill factor. Explain the terms in it and its significance using the I-V characteristics.	[6]	Isc – 1M Voc – 2M FF – 1 Significance – 2M	M	K,	4
Q3(b)	Explain the functions of bypass diode and blocking diode while connecting solar panels in an array.	[4]	2M each	M	K,	4
Q3(c)	A Si solar cell typically has reverse saturation current density $J_0 = 1 \times 10^{-12}$ A/cm ² . Such a Si solar cell with an area of 275 cm ² is illuminated by sunlight of intensity $P_{solar} = 1000$ W/m ² . Short circuit current $I_{sc} = I_L = 4.2$ A. If the fill	[4]	$V_{oc} = \frac{kT}{q} \ln \left(\frac{I_L}{I_0}\right)$ $= 0.0258$ $\times \ln \left(\frac{4.2}{2.75 \times 10^{-10}}\right)$ $= 0.605 V$ $\eta = \frac{I_{sc}V_{oc}FF}{2}$	Н	A	4
	factor FF of the cell is 0.65, then calculate efficiency of the solar cell at 27°C.	egold a cros at ord	$ \eta = \frac{I_{sc}V_{oc}FF}{P_{in}} \\ = \frac{3.3 \times 0.605 \times 0.65}{27.5} \\ = 0.0472 $		dur	
Q4(a)	Define and explain the following battery parameters: (i) battery capacity (ii) depth of discharge (iii) C-rating.	[6]	2M each	M	C, A	4
Q4(b)	Explain use of anti-reflection coating and surface texturing to enhance efficiency of a solar cell.	[4]	2M each	M	C, A	4
Q4(c)	Four solar cells are connected in series in a row. Seven such rows are connected in parallel to form an array. Calculate open circuit	[4]	$(V_{oc})_{array}=4\times0.6 =$ 2.4V $(I_{sc})_{array}=7\times1 = 7A$	L	A	4
	voltage $(V_{oc})_{array}$ and short circuit current $(I_{sc})_{array}$ for the array. Given, $V_{oc} = 0.6$ V and $I_{sc} = 1$ A for a single solar cell.	Sap	Single to all more assumed $A^{2}(-3-3)^{-1}$		SISON N	

a instruction the opposition for