| Total No. of Questions: 1 | 12] |
|---------------------------|-----|
|---------------------------|-----|

P2636

| SEAT No.: |                  |
|-----------|------------------|
| [Total    | No. of Pages · 3 |

## [5154]-2 B.E.(CIVIL)

## DAMSAND HYDRAULIC STRUCTURES

(2008 Pattern) (Semester-I) (401002)

Time: 3 Hours] [Max. Marks: 100

Instructions to the candidates:

- 1) Answer Q1 or Q2, Q3 or Q4, Q5 or Q6 from Section-I and Q7 or Q8, Q9 or Q10, Q11 or Q12 from Section-II.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume Suitable data if necessary.

## **SECTION-I**

- **Q1)** a) Explain the factors which govern the selection of site for dam construction. [8]
  - b) Briefly explain the meaning of storage dam, diversion dam, overflow dam and rigid dam. [6]

OR

- Q2) a) Write the concept of arch dam. Types of arch dams and explain any one type with sketch.[8]
  - b) Write different types of instruments used to monitor dams and explain any one. [6]
- **Q3)** a) Derive an expression for limiting height of a gravity dam [6]
  - b) What is meant by elementary profile of gravity dam? Obtain an expression for base width. [6]
  - c) Discuss various mode of failure of a solid gravity dam.

OR

- **Q4)** a) Determine the stability analysis of a gravity dam with following data:
  - i) Overturning moment at toe =  $1 \times 10^6$  KN-m
  - ii) Total resisting moment at toe =  $2 \times 10^6$  KN-m
  - iii) Total vertical force above box =  $50 \times 10^3$  KN
  - iv) Base width of dam = 50 m
  - v) Slope of downstream surface 0.8H:1V

Calculate the maximum and min. Vertical stresses on foundation and also determine the max. principal stresses at toe of the dam. Assume that there is no tailwater and V|s face is vertical. [10]

P.T.O.

[6]

|             | b)  | Write short note on:                                                                                                             | <b>3</b> ] |
|-------------|-----|----------------------------------------------------------------------------------------------------------------------------------|------------|
|             |     | i) Earthquake forces on gravity dam with the help of sketch.                                                                     |            |
|             |     | ii) Drainage gallary.                                                                                                            |            |
| Q5)         | a)  | Draw a neat sketch of an earthen dam homogeneous in section of 24 i                                                              | n          |
|             |     | height and name the various parts. Assume necessary data. Draw to the                                                            | e          |
|             |     | scale.                                                                                                                           |            |
|             | b)  | Classify earthen dams according to the method of construction.                                                                   | _          |
|             | c)  | Discuss briefly various causes of failure of earthen dam.  OR                                                                    |            |
| Q6)         | a)  | Derive an expression for determining the seepage i.e discharge passin through the body of an earthen dam of homogeneous section. | _          |
|             | b)  | Explain with a neat sketch the Swedish slip circle method of analysin                                                            | _          |
|             |     | the stability of downstream slopes of on earthen dam under stead seepage.                                                        | •          |
|             |     | SECTION-II                                                                                                                       | ']         |
|             |     | <u>SECTION II</u>                                                                                                                |            |
| <i>Q7</i> ) | a)  | Compare Khoslas and Blighs creep length theory for seepage. [5]                                                                  | 5]         |
|             | b)  | Write types of gates on spillway and Explain any one . [5]                                                                       | _          |
|             | c)  | A Ogee type spillway has 12 crest gates each having 10 m clear span                                                              | 1.         |
|             |     | Find the max. flood that can be safely passed by lifting all the gates whe                                                       | n          |
|             |     | the max. reservoir level is 105.00m. and crest level is 101.00m.                                                                 |            |
|             |     | Take coeff. C=2.16                                                                                                               |            |
|             |     | Coeff. of end contraction of piers=0.05                                                                                          |            |
|             |     | Coeff. of contraction for abutment =0.1                                                                                          | _          |
|             |     | Also design downstream profile of this spillway of gravity dam havin                                                             | _          |
|             |     | downstream face slope 0.7H:1V                                                                                                    | )]         |
|             |     | OR                                                                                                                               |            |
| Q8)         | a)  | Explain Lanes weighted creep theory. [5]                                                                                         | 7          |
| ~ /         | b)  | Discuss the merits and demerits of bucket type energy dissipator. [5]                                                            |            |
|             | c)  | Write notes on: [8                                                                                                               |            |
|             |     | i) Types of gates                                                                                                                |            |
|             |     | ii) Maintenance of outlet structures                                                                                             |            |
| Q9)         | Wri | te short note on: $[4 \times 4 = 16]$                                                                                            | 6]         |
|             | a)  | Discuss various design consideration in case of cross drainage work.                                                             |            |
|             | b)  | Draw a neat sketch of syphon aqueduct and state the condition undowhich this type of C.D. work can be adopted.                   | r          |
|             | c)  | Laceys theory for design of alluvial canal.                                                                                      |            |

OR

d)

Losses in irrigation canal.

**Q10)**a) Design a channel using Kennedys theory carrying a discharge of 30 m<sup>3</sup>/s with critical velocity ratio and Mannings constant equal to 1.0 and 0.0225 respectively. Assume that bed slope is equal to 1 in 5000. [8]  $[4\times2=8]$ b) Write notes on: i) Rapid falls ii) Notch falls Stepped falls iii) iv) Glacis type falls. **Q11)**a) Write short note on:  $[4\times2=8]$ Objective and methods of river training i) Objective and methods of Levees Distinguish between high haed power development scheme and low head schemes with the help of neat sketch. [8] Draw a neat sketches and explain the types of guide banks for river *Q12*)a) training works. [8] Derive the terms: b)  $[4\times2=8]$ Load factor i) ii) Capacity factor iii) Plant use factor

iv) Power factor.



3



[5154]-2