Total No. of Questions : 12]

[Total No. of Pages : 4

[5154]-23

B.E. (Civil) STATISTICALANALYSIS & COMPUTATIONAL METHODS IN CIVIL ENGINEERING (2008 Course) (Elective - IV) (401008C) (Semester-II)

Time : 3 Hours]

[Max. Marks :100

Instructions to the candidates:

- 1) Answer Q. 1 or Q.2; Q.3 or Q.4; Q.5 or Q.6 from section I and Q.7 or Q.8; Q.9 or Q.10; Q.11 or Q.12 from section II.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 6) Assume suitable data; if necessary.

SECTION-I

- *Q1)* a) The following data show the temperatures of effluent at discharge from a sewage treatment plant. Calculate. [12]
 - i) Sample mean, median, variance and standard deviation.
 - ii) Construct a box-plot for this data and comment on the information in this display.

Temp.	40-	42-	44–	46-	48–	50-	52-	54–
	42	44	46	48	50	52	54	56
No.of								
observations	1	1	6	3	7	4	1	1

b) Enlist various methods of sampling and explain any one.

[4]

OR

Q2) a) Calculate mean, median, variance and standard deviation for the following data. Construct a stem and leaf diagram for this data and comment on it.[12]

Range	450–	950–	1450–	1950–	2450–	2950–	3450–
	950	1450	1950	2450	2950	3450	3950
No. of Observations	7	9	4	0	4	2	1

b) Explain applications of statistics in civil engineering.

[4]

- Q3) a) In a testing center, an experiment needs 1.41 cm thick aluminium cylinder. Assume that the thickness of the cylinder has a normal distribution with a mean of 1.41 cm and a standard deviation of 0.01 cm. [12]
 - i) What is the probability that thickness is greater than 1.42 cm.
 - ii) What thickness is exceeded by 95% of the samples.
 - iii) What proportion of samples lie between 1.38 cm and 1.44 cm.

Use the standard normal distribution table given below.

Ζ	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Area	0.00	0.0398	0.0793	0.1179	0.1554	0.1915	0.2257	0.2580	0.2881	0.3159

Ζ	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9
Area	0.3413	0.3643	0.3849	0.4032	0.4192	0.4332	0.4452	0.4554	0.4641	0.4713

Ζ	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
Area	0.4772	0.4821	0.4861	0.4893	0.4918	0.4938	0.4953	0.4965	0.4974	0.4981	0.4987
	iiiilkhsdlkfjhlfkjdslkfjldsfdsfdsfjkldsjlfjsdliii										

b) State the properties of normal distribution.

OR

- (Q4) a) The compressive strength of samples of concrete can be modelled by a normal distribution with a mean of 6000 kg/cm² and a standard deviation of 100 kg/cm². [12]
 - i) What is the probability that a sample's strength is less than 6250 kg/cm^2 .
 - ii) What is the probability that a sample's strength is between 5800 and 5900 kg/cm².
 - iii) What strength is exceeded by 95% of the samples.

Use the standard normal distribution table given in Q.3a.

b) State the properties of binomial and poisson distribution. [4]

[4]

[12] 6 7.48

Find the correlation coefficient for the folloiwng data. **Q5)** a)

			1.98							
у	7.32	12.22	16.34	23.66	28.06	33.39	34.12	39.21	44.21	47

Explain linear and multiple regression. b)

OR

Using interpolation formula, find f(0.25) for the following data. **Q6)** a) [12]

X	0.1	0.2	0.3	0.4	0.5
f(x)	9.98	4.96	3.28	2.43	1.91
	33	67	36	39	77

What do you mean by coefficient of correlation. Write the equation to b) determine it and explain all the terms in it. [6]

SECTION-II

- **Q7)** a) Solve the following by Gauss elimination method. [8] y + z = 2; 2x + 3z = 5; x + y + z = 3
 - Sovle using Gauss Seidel metohd (3 iterations) b) [8] $12x_1 + 3x_2 - 5x_3 = 1$; $x_1 + 5x_2 + 3x_3 = 28$; $3x_1 + 7x_2 + 13x_3 = 76.$

OR

Q8) a)	Sovle the following using Gauss-Jordan method.	[8]
	x + y + z = 5; $2x + 3y + 5z = 8$; $4x + 5z = 2$	
b)	Solve using Gauss-Seidel method (3 iterations).	[8]

- $4x_1 + x_2 x_3 = 3$; $2x_1 + 7x_2 + x_3 = 19$; $x_1 3x_2 + 12x_3 = 31$.
- **Q9)** a) Explain false position method. [8]
 - Using bisection method, find the root of $2x \log_{10} x = 7$. b) [8]

OR

Explain Secant method. *Q10*)a) [8] Find the root of the following equation using Newton-Raphson **b**) method. $4x - e^x = 0$. [8]

[5154]-23

[6]

<i>Q11</i>)a) b)	Explain simposn's 3/8 method. Integrate the following using Trapezoidal method.	[8] [10]
	$\int_{0}^{\pi} \sin x \cdot dx ; n = 10.$	
	OR	
Q12) a)	Explain 2 point Gauss-Quadrature method.	[8]
b)	Evaluate the following using simpson's 3/8 method.	[10]

$$\int_{0}^{0.6} e^{x} dx; n = 6.$$