[5154]-171

[Total No. of Pages : 3

B.E. (Computer Engineering) DESIGN & ANALYSIS OF ALGORITHMS (2008 Pattern) (Semester-I)(410441)

Time : 3 Hours]

[Max. Marks :100

Instructions to the candidates:

- 1) Answer 3 questions from Section I and 3 questions from Section II.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume Suitable data, if necessary.

SECTION-I

- **Q1)** a) Prove if $f(n) = a_m n^m + \dots + a_1 + a_0$ Then $f(n) = O(n^m)$ [8]
 - b) Write control abstraction for divide and conquer strategy. Explain quick sort algorithm. State its time complexity. [10]

OR

- Q2) a) Define asymptotic notations. Explain their significance in analyzing algorithms. [6]
 - b) Write and explain Dijkstra's algorithm for a directed graph. [6]
 - c) What is Mathematical Induction? How it can be used to prove that an algorithm is correct? [6]
- **Q3)** a) Solve the instance of 0/1 Knapsack problem using dynamic programming: n=4, m=25

$$(P_1, P_2, P_3, P_4) = (10, 12, 14, 16)$$

 $(W_1, W_2, W_3, W_4) = (9, 8, 12, 14)$ [8]

b) What is the Flow Shop Scheduling problem? Explain how principle of optimality holds for this problem. Also explain how it is solved using dynamic programming.
[8]

- Q4) a) State and explain the principle of Dynamic Programming. Name the elements of Dynamic Programming and Compare Dynamic Programming with Greedy method.[8]
 - b) What is the optimal binary search tree problem? Explain how it is solved using dynamic programming. [8]
- *Q5)* a) Explain backtracking strategy and write general recursive and iterative backtracking algorithms.[8]
 - b) Explain the solution to N-Queen's problem using branch and bound method.

OR

- *Q6)* a) Compare the Backtracking method with a depth first search technique.Explain backtracking algorithm for Hamiltonian Cycles problem. [8]
 - b) Explain the difference between FIFO and LC Branch and Bound solution to the 0/1 Knapsack problem. [8]

SECTION - II

Q7)	a)	Prove that Satisfiability reduces to Chromatic Number Decision Probl (CNDP).	lem [6]
	b)	Prove that vertex cover problem is NP-complete.	[8]
	c)	Differentiate between NP-hard and NP-complete algorithms.	[4]
		OR	
Q8)	a)	Show that the partition problem reduces to minimum finish time ne preemptive schedule.	on- [6]
	b)	Explain NP hard code generation problem.	[6]
	c)	State and Explain Cook's Theorem	[6]
Q9)	a)	Explain with example parallel evaluation of expression.	[8]
	b)	Prove that "the maximum of n keys can be found in O(log log n) ti using n common CRCW PRAM processors".	ime [8]

OR

[5154]-171

- (Q10)a) Explain how graph problems can be solved on parallel processors. [8]
 - b) Explain pointer doubling problem with algorithm. What is time complexity of the algorithm? [8]
- *Q11*)a) What is Convex Hull? Explain Quick Hull and Graham's Scan algorithm. [8]
 - b) Explain any two image edge detection algorithms. [8]

OR

- **Q12)**a) What is meant by heuristic algorithms? Discuss any one heuristic search algorithm.a [8][8]
 - b) What is deadlock? Explain how resource allocation can be done to avoid deadlock. Write resource allocation algorithm. [8]

)12)Q

*কৈ*ৰ্জক