P2949

[5154]-501

B.E.(Civil)

ENVIRONMENTAL ENGINEERING-II (2012 Course) (End Sem.) (401001) (Semester-I)

Time : 2½ Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8 and Q.9 or Q.10.
- 2) Figures to the right indicate full marks.
- 3) Draw neat figures wherever necessary.
- 4) Assume necessary data.
- 5) Use of scientific calculators is allowed.
- **Q1**) a) Differentiate between separate and combined sewerage system. [5]
 - b) Explain the procedure for determination of BOD. [5]

OR

- Q2) a) What are the sources of sewage and how sewage flow quantity is estimated? [5]
 - b) Explain the procedure for determination of COD. [5]
- Q3) a) Determine diameter and depth of primary sedimentation tank for sewage flow 10 million liters per day.[5]

Given data.

- i) Detention time = 2.5 hours
- ii) Surface loading rate = $40000 \ 1/m^2/d$
- b) Write streeter-Phelps equation, explain the terminology and write its application. [5]

[Total No. of Pages :3

SEAT No :

<i>Q</i>4) a)	 plant is as follows i) Sewage flow ii) Volume of aeration tank iii) Influent BOD iv) Effluent BOD v) Mixed liquor suspended solid vi) Effluent suspended solids 	= 30 mg/l	
	vii) Waste sludge suspended solie viii) Quantity of waste sludge	ds = 9500 mg/l =200 m ³ /d	
	Determine.	200 m/d	
	1) Food to microorganisms	sratio	
	2) Sludge age		
	3) Percentage of efficiency	of BOD removal	
b)	Differentiate between single stage	and two stage filter. [4]	
Q5) a)	Design an oxidation pond for following data [8		
	i) Location	: 24° Latitude	
	ii) BOD loading at 24° Latitude	: 225 kg/ha/d	
	iii) Elevation	: 900 m above sea level	
	iv) Mean monthly temperature	: 30° maximum and 15° minimum	
	v) Population to be served	: 10000	
	vi) Sewage flow	: 100 lpcd	
	vii) Desired effluent BOD5	: 20 mg/L	
	viii) Pond removal constant at 20°	PC : 0.1/d	
b)	b) Write wastewater treatment principle of phytoremediation tech		
	and explain its working with schen	natic sketch. [4+4]	
OR			

Q6) a) A wastewater flow is $10000 \text{ m}^3/\text{d}$, BOD_5 is 200 mg/L, design an aerobic flow through type lagoon to serve a town of 50000 persons, using a ideal complete mixing model. Since the lagoon is proposed to be followed by another treatment unit, its size can be restricted to give a detention time of only 3 days. **[8]**

Given data

k=0.015 per day at 20°C, Y = 0.5, $k_{\rm d}^{}$ = 0.07 per day

b) Write wastewater treatment principle of root zone cleaning system and explain its working with schematic sketch. [4+4]

[5154]-501

- *Q7*) a) Draw a neat sketch of upflow sludge blanket (UASB) reactor. Explain the principle of working and its advantages and disadvantages.[2+2+4]
 - b) The sludge is known to be 70% organic and 30% inorganic in nature. Approximately 60% of the organic fraction is converted to liquid and gaseous end products after a 30 day period. The digested sludge has a solids content of 5% and must be stored for periods of up to 85 days. Determine the volume of requirement for a standard rate single stage digester. The raw sludge loading rate is 80 m³/d. [8]

OR

- Q8) a) Write principle and stages of anaerobic digestion. Explain factors affecting digestion process. [4+4]
 - Explain any two methods of sludge disposal with advantages, disadvantages and application. [4+4]

Q9) a)	Explain methods of waste water sampling.	[6]

- b) Write short note on equalization and neutralization. [6]
- c) Draw and explain units of treating dairy wastewater. [6]

OR

- Q10)a) Explain the following points related to sugar industry. [4+3+3]
 - i) Flow sheet of manufacturing process and wastewater generation
 - ii) Characteristics of wastewater
 - iii) Flow sheet of wastewater treatment
 - b) Explain in brief primary and secondary treatment process adopted for treating industrial wastewater. [4+4]

 \rightarrow \rightarrow \rightarrow