P2953

[5154]-505

B.E. (Civil)

SYSTEMS APPROACH IN CIVIL ENGINEERING (2012 Course) (Semester - I) (End Semester) (Elective - I) (401004 B)

Time : 2½ Hours]

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume suitable data, if necessary.

Q1) a) Explain application of system approach in Civil Engineering? [4]

- Define following terms b)
 - i) **Objective function**
 - Constraint ii)
 - Convex and Concave function iii)

OR

- State the algorithm of steepest gradient method. *O2*) a) [4]
 - b) Find maximum of f = x (1.5 - x) in the interval of (0, 1) within 10% accuracy using Dichotomous Search technique. Take f = 0.001. Solve up to two iteration. [6]
- Find the sequence that minimize the total elapsed time to complete the *Q3*) a) job in the order of AB [6]

	Jobs Processing Time in Minutes					
Machine	1	2	3	4	5	
A	10	14	9	11	16	
В	15	8	13	10	12	

Explain operating characteristics of queuing theory. b)

OR

- What is mean by simulation? Explain the application of Monte Carlo **Q4)** a) Simulation. [5]
 - Minimize $Z = 2 x_1^2 + 2x_1x_2 + 2 x_2^2 4 x_1 6x_2$ b) Take, $x^0 = [0 \ 0]$ by Newton Method. [5]

SEAT No. :

[Total No. of Pages : 4

[4]

[Max. Marks: 70

[6]

[12]

b) Find shortest path for a network with following da

Node	Distance in kms	Node	Distance in kms
A-B	12	B-C	14
B-D	15	С-Е	21
C-F	18	C-G	29
D-E	32	D-F	26
D-G	34	E-H	19
E-I	22	F-H	15
F-I	28	G-I	35
G-H	12	H-J	41
I-J	31		

OR

Q6) a) What is the need and applications of Dynamic Programming	[4]
---	-------------

b) Maximize the sales by allocating salesman to different zones as per amount of sales contribution as given below [12]

No of salesman	Zone 1	Zone 2	Zone 3
0	45	52	60
1	55	64	69
2	62	70	77
3	74	79	86
4	82	92	95
5	88	95	98
6	85	97	102
7	90	100	109

[5154]-505

Q7) a) Minimize $Z = 6x_1 + 5x_2$ Subject to $20x_1 + 12x_2 \ge 200$ $8x_1 \ge 40$ $6x_2 \ge 30$ $x_1, x_2 \ge 0$ Use Simplex method to solve the problem.

b) Explain with the help of diagrams, following conditions in LPP

[8]

- i) Unbounded solution
- ii) No feasible solution
- iii) Infinite solution
- iv) Unique solution

OR

- (Q8) a) Explain 'Two phase method'. Explain the application of this method in solving LP problems. [6]
 - b) Use Big M method to solve following [10]

Minimize $Z = 60 x_1 + 80 x_2$

Subject to

 $x_1 \le 400$

 $x_2 \ge 200$

 $x_1 + x_2 = 500$

$$x_1, x_2 \ge 0$$

[5154]-505

3

- **Q9)** a) Explain steps involved in V.A.M.
 - b) Solve following assignment problem to minimize time (in minutes) required by 4 operators on 4 machines [12]

		machines			
		Ι	II	III	IV
Operators	А	14	19	16	12
	В	12	15	22	18
	С	10	12	18	15
	D	16	14	19	15
	E	15	10	18	15
				OR	

Q10)a) Write a short note on assignment problem.

b) Calculate transportation cost for following problem using V.A.M. [6]

destinations

	D1	D2	D3	D4	Supply
origins O1	09	18	16	20	25
O2	14	10	19	15	75
O3	17	13	15	17	50
O4	10	14	12	18	100
Demand	60	50	100	40	

c) Optimize above problem using u-v method.

[8]

[4]

x x x