Total No. of Questions: 10]

SEAT No. : [Total No. of Pages: 2

P3127

[5154]-693 BE (IT)

MACHINE LEARNING

		(2012 Pattern) (414455) (Semester-I) (End Se	m.)
		P½ Hours] tions to the candidates:	[Max. Marks : 70
110301	1) 2) 3)	Draw neat diagrams wherever necessary. Assume suitable data, if necessary. Figures to the right indicate full marks.	
Q1)	a)	Write Mathematical form of the following:	[5]
		i) Classification	
		ii) Class probability estimation	
		iii) Regression.	
		Which one out of these three is more precise? Which overfitting?	h one leads to
	b)	Prove with an example FP=Neg-TN.	[5]
		OR	
Q2)	a)	Write output code matrix for one-versus-one symmetric three classes.	c case. Assume [5]
	b)	Justify use of Machine Learning to solve following task sale value of a car based on the locality of the property"	
Q 3)	a)	Explain VC dimension.	[5]
	b)	Explain kernel methods for non-linearity.	[5]
		OR	
Q4)	a)	What is Machine Learning? Explain any one application Learning can be used.	where Machine [5]
	b)	Explain Support Vector Machine.	[5]

Q5)	a)	Find all 3 -item itemsets from this set with minimum support=2.					
		Tran	s_id	Itemlist			
		T1		$\{K, A, D, B\}$			
		T2		$\{D,A,C,E,B\}$			
		T3		$\{C, A, B, E\}$			
		T4		$\{B,A,D\}$			
	b)	Write K-means algorithm.					
				OR			
Q6)	a)	Explain silhouettes.			[9]		
	b)	Discuss various distance measures.					
<i>Q7</i>)	a)	Write a note on compression based models.					
	b)	Explain Naive Bayes Classification Algorithm.					
OR							
Q8)	a)	Define the terms:					
		i) Bernoulli distribution					
	ii) Binomial distribution						
		iii) Multinomial distribution					
		iv) Gaussian distribution					
	b)	Explain discriminative learning.					
Q9)	a)	Explain on-line learning.			[8]		
	b)	Expl	lain multi task lea	arning	[8]		
OR							
Q10,) a)	Explain the concept of penalty and award in reinforcement learning.					
	b)	Expl	lain ensemble lea	arning.	[8]		