Total No. of Questions : 10]

P2994

[5154]-559

B.E. (Mechanical Engineering) **DESIGN OF PUMPS, BLOWERS AND COMPRESSORS** (2012 Course) (Semester - II) (End Sem.) (402050C) (Elective - IV)

Time : 2½ Hours]

Instructions to the candidates:

- Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8, Q9 or Q10. 1)
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- Assume Suitable data, if necessary. 4)

Q1) a) Write note on:

- i) Compressible flow machines.
- ii) Incompressible flow machines.
- b) Explain performance characteristics curves for pumps. [5]

OR

- Differentiate between compressible & incompressible flow machines.[5] *Q2*) a)
 - Explain the basic equation of energy transfer between fluid & rotor. [5] b)
- *Q3*) a) Explain effect of acceleration in suction & delivery pipe on indicator diagram. [5]
 - b) A double acting reciprocating pump running at 40 rpm is discharging 1m³ of water per min. the pump has a stroke of 400 mm. The diameter of the piston is 200mm. the delivery & suction head are 20 m & 5 m respectively. Find the slip of the pump & power required to drive the pump. [5]

OR

- **04)** a) What is slip in pump? Explain the meaning of negative slip. [5]
 - A single acting reciprocating pump has a plunger diameter 250 mm & b) stroke of 450 mm runs at 60 rpm. The length & diameter of delivery pipe are 60m & 100 mm respectively. Determine the power saved in overcoming friction in the delivery pipe by fitting an air vessel on the delivery side of the sump. Assume friction factor = 0.01. [5]

[Total No. of Pages : 3

[Max. Marks: 70

[5]

Q5) a)	Explain performance of axial fan with graph.		8]
b)	How the dust erosion of centrifugal impeller does occur? effect on the performance?		:s []
	OI	R	
Q6) a)	Enlist the methods to reduce the fan noise.		8]
b)	Discuss various applications of	f fans & blowers. [8	;]
Q7) a)	Explain UGV & DGV with velocity triangle.		8]
b)	A centrifugal blower takes in 180m ³ / min of air at suction pressure of 1.013 bar & temperature of 430C and delivers it at 750 mm of W.G. taking the efficiencies of the blower and drive as 80% & 82% respectively. Determine the power required to drive the blower and the state of air at exit. [8]		
	OI		-
Q8) a)	Write short note on selection of blowers for a desired application. [8]		3]
b)	A centrifugal fan has the following data: [8]		
	Inner diameter of the impeller	= 18cm	
	Outer diameter of the impeller	= 20cm	
	Speed	= 1450 rpm	
	relative velocity at entry	= 20 m/s	
	absolute velocity at entry	= 21 m/s	
	relative velocity at exit	= 17 m/s	
	absolute velocity at exit	= 25 m/s	
	flow rate	= 0.5 kg/s	
	motor efficiency	= 78%	
	Density of air	= 1.25 kg/m ³	
	Determine:		
	i) stage pressure rise		
	ii) degree of reaction		
	iii) power to drive the fan		

[5154]-559

- *Q9*) a) Explain enthalpy-entropy diagram for centrifugal compressor. **[8]**
 - b) Draw velocity triangles at the entry & exit for the following axial compressor stage. [10]
 - i) $R = \frac{1}{2}$
 - ii) $R < \frac{1}{2}$

OR

- *Q10*)a) Waht are the basic design features in axial flow compressor? [8]
 - b) Draw & explain performance curves of centrifugal compressors. [10]

