P2980

[5154]- 535

B.E. (Mechanical)

TRIBOLOGY (Elective - I)

(End Sem.) (2012 Pattern) (Semester - I) (402044 B) (Theory)

Time :2¹/₂ Hours]

[Max. Marks:70

Instructions to the candidates:

- Write Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10. 1)
- 2) Figures to the write indicates full marks.
- 3) Assume Suitable data wherever necessary.
- Why recycling of used oil is important? How recycling of motor oil is *Q1*) a) done? [5]
 - What is friction? Classify it. Write four friction measuring methods. [5] b)

OR

Q2) a)	Define Tribology. Explain its importance in industry.	[5]
b)	Define wear. Explain Adhesive and Abrasive wear.	[5]

Q3) The following data is given for a 360° hydrodynamic bearing: [10]

- Radial load = 10 KNi)
- Journal speed = 1450 rpmii)
- $\frac{l}{d}$ Ratio = 1 iii)
- Bearing length = 50 mmiv)
- v) Radial clearance = 20 microns
- Eccentricity = 15 microns vi)

Calculate:

- i) The minimum oil film thickness
- The coefficient of friction ii)

SEAT No. :

[Total No. of Pages : 3

- iii) The power lost in friction
- iv) The viscosity of lubricant in cP

$\frac{l}{d}$	$\frac{ho}{C}$	E	S	$\left(\frac{\mathbf{r}}{\mathbf{c}}\right)\mathbf{f}$	Q r.C.n.l	$\frac{Qs}{Q}$	Pmax p
	0.2	0.8	0.0446	1.7	4.62	0.842	3.195
1	0.4	0.6	0.121	3.22	4.33	0.680	2.409
	0.6	0.4	0.264	5.79	3.99	0.497	2.066
			OR		•		

[4]

v) The total flow rate of lubricant in *lit/min*.

- *Q4)* a) Explain the mechanism of pressure development in hydrodynamic thrust bearing.
 - b) Explain any TWO.
 - i) Surface fatigue wear
 - ii) Rolling friction
 - iii) EPAdditive
- Q5) a) Explain with neat sketch, working principal of hydrostatic step bearing. A hydrostatic step bearing has shaft diameter 120 mm and recess diameter 80 mm. It is working under supply pressure of lubricant of 8 bar which induces film thickness in the bearing of 0.08 mm.

Viscosity of oil lubricant is 30×10^{-9} N-S/mm².

b) Derive an expression for flow rate through rectangular slot. State the assumptions made. [8]

OR

- *Q6)* a) Derive the expression for the pressure distribution, load carrying capacity and time of approach for a circular plate near a plane under hydrostatic squeeze film lubrication.
 - b) Explain the phenomenon of squeeze film lubrication [8] Two parellel plates 30 mm long and infinitely wide are separated by an oil film 25 μ m thick having viscosity of 0.65 Ns/m². If the load per unit width of 15000 N/m is applied to the plates, find the time required to reduce the film thickness to 2.5 μ m and the velocity of approach, maximum pressure.

- *Q7*) a) Explain the phenomenon of Elastohydrodynamic lubrication [EHL] and state the applications where EHD lubrication is observed.
 - b) Explain merits, demerits and applications of gas bearings. [8]

OR

- *Q8)* a) What is Hertz theory in Elastohydrodynamic Lubrication? Write Ertel grubin equation with all specific terms and also write the limitations of this equation.[8]
 - b) Explain the working of active magnetic bearing with its advantages and applications. Also mention its types. [8]

[18]

- *Q9)* Write a note (Any THREE):
 - a) Lubrication in metal working
 - b) Foil bearing
 - c) Tribological aspects of wheel on rail road.
 - d) Lobe bearing.

OR

Q10) a)	State desirable properties of bearing materials. List few suitable bearing		
	materials	[6]	
b)	Explain the mechanics of tyre road interactions.	[6]	

c) What is surface engineering? State its significance and applications. [6]

৵৵৵৵