Total No. of Questions: 10]

SEAT No.:	
[Total	No. of Pages : 2

P4883

[5155] - 9

M.E. (Mechanical) (Design Engineering) INDUSTRIAL TRIBOLOGY (2008 Pattern) (Elective - IV)

Time: 3 hours [Max. Marks: 100

Instructions to the candidates:

- 1) Attempt three questions from section I and three questions from section II.
- 2) Figures to the right indicate full marks.

SECTION - I

- Q1) a) Discuss various types of friction and Explain Coulomb classical theory of friction.
 - b) Define Tribology. Explain its importance in industry. [8]
- Q2) a) Derive an expression for load carrying capacity and oil flow rate for hydrodynamic step bearing. State the assumptions made.[8]
 - b) Obtain Petroffs equation for friction coefficient and power lost in lightly loaded bearings. Also state the assumptions made. [8]
- Q3) a) Explain the term Wear. Explain in detail different types of wear experienced in mechanical systems? Discuss the effect of temperature and load on wear.
 - b) What do you mean by rolling friction and rolling resistance? Explain Tomlinson's theory of molecular attraction. [8]
- **Q4)** a) Derive an expression for flow rate through rectangular slot. State the assumptions made. [8]
 - b) What are the advantages and limitations of hydrostatic bearings over hydrodynamic bearings. [8]

	a)	Bearing materials
	b)	Stick-slip Phenomenon
	c)	Summerfield Number
	d)	Heat in bearings
		SECTION - II
Q6)	a)	Derive the expression for the pressure distribution, load carrying capacity and time of approach for a circular plate near a plane under hydrostatic squeeze film lubrication. [8]
	b)	State basic requirements of gas lubrication. State the advantages and limitations of gas lubricated bearings. [8]
Q 7)	For	Non - Newtonian behavior of lubrication oils explain the following. [16]
	a)	Bingham fluids
	b)	Thixotropy
	c)	Pseudo plastic flow
	d)	Dilitancy
	e)	Elasticity
Q8)	a)	Explain mechanics of tyre road interactions. And discuss the rolling friction model. [8]
	b)	Explain tribological aspect of metal workings. [8]
Q9)		ng modified Reynolds equation for Elasto-hydrodynamic lubrication, derive l Grubin equation. State limitations of this equation. [16]
Q10)Wri	te a note on following (Any Three) [18]
	a)	Tilting pad bearings
	b)	Power losses in Hydrostatic step bearing
	c)	Piston pin lubrication.
	d)	Recycling and processing of used oil

[18]

Q5) Write a note on following (Any Three)