Total No. of Questions: 8]

SEAT No:

[Total No. of Pages :2

[Max. Marks: 50

P 3893

Time: 3 Hours]

Instructions to the candidates:

[5155]-142

M.E. (Civil - Structures)

THEORY OF PLATES AND SHELLS

(2013 Credit Course) (Semester-II)

	<i>1)</i>	Answer ant five questions from the following.	
	2)	Neat diagrams must be drawn wherever necessary.	
	<i>3)</i>	Figures to the right indicates full marks.	
	<i>4)</i>	Assume suitable data, if necessary and clearly state.	
	<i>5)</i>	Use of cell phone is prohibited in the examination hall.	
	<i>6)</i>	Use of electronic pocket calculator is allowed.	
Q1)	a)	Differentiate small and large deflections of thin plate. Explain assumption of small deflection theory of thin plates.	the [5]
	b)	Derive an appropriate expression for pure bending of plates.	[5]
Q 2)	a)	Explain boundary condition for the analysis of plates.	[3]
	b)	A rectangular plate of size $a \times b$ with four edges simply supported care a uniformly distributed load q. Derive an expression for moments us Navier's method.	
Q3)	a)	Derive an expression for maximum deflection of the rectangular plant with simply supported edges subjected to moments M distributed alothe edge at $y = \pm b/2$ by Lavy's method.	
	b)	Explain in brief moment curvature relationship for first order sh deformation theory.	ear [2]
Q4)	a)	Develop moment curvature relations for a circular plate.	[5]
	b)	Describe the boundary condition for the circular plate and a circulate with central hole.	ular [5]
		D '	$T \Omega$

- **Q5)** a) State and explain in brief classification of shell with sketches. [4]
 - b) Differentiate cylindrical, conical and spherical shells on the basis of analysis. [6]
- **Q6)** a) Explain application of membrane theory for the analysis of Circular cylindrical shells. [5]
 - b) Derive equilibrium equations for circular cylindrical shells using membrane theory. [5]
- Q7) a) Derive governing differential equation for circular cylindrical shells using bending theory.[5]
 - b) Analyze pipes and pressure vessels using bending theory. [5]
- **Q8)** a) Explain in brief principle of Lundgren's beam theory and its application for the analysis of cylindrical shell. [5]
 - b) Differentiate beam analysis and arch analysis using beam theory. [5]

