P3909

[5155] - 159

M.E. (Mechanical Design Engineering) ANALYSIS AND SYNTHESIS OF MECHANISMS (2013 Course) (Semester - II)

Time : 3 Hours]

[Max. Marks :50

Instructions to the candidates:

- 1) Answer any five questions.
- 2) Neat diagrams must be drawn whenever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of calculator is allowed.
- 5) Assume suitable data whenever necessary.
- *Q1)* a) Design a four bar mechanism which will satisfy the following precision conditions[7]

$\omega_1 = 8 \text{ rad/sec}$	$\alpha_1 = 0 \text{ rad/sec}^2$
$\omega_2 = 1 \text{ rad/sec}$	$\alpha_2 = 20 \text{ rad/sec}^2$
$\omega_3 = 6 \text{ rad/sec}$	$\alpha_3 = 0 \text{ rad/sec}^2$

Also draw the mechanism.

- b) Write a short note on Dyad.
- **Q2)** A mechanism is shown in Fig. 01, the dimensions of different link are as given below $O_2A = 7.5$ cm, AB = 5 cm, BC = 7.5 cm, $O_5C = 6.5$ cm (is vertical) CD = 10 cm BD = 5 cm $O_6D = 5$ cm Angle $O_2AB = 110^\circ$, Angle $ABC = 115^\circ$ Angle $O_6DB = 117^\circ \omega_2 = 10$ rad/sec (Clockwise). Using relative velocity method determine angular velocity of link $O_6D(\omega_6)$ [10]

[3]

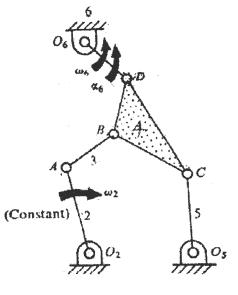


Fig. 01

[10]

- **Q3)** Write short note on any two of the following:
 - a) Auxiliary Point Method for Mechanism Analysis.
 - b) Cubics of Stationary Curvature.
 - c) Branch and Order Defect.
- Q4) a) What are 'Elastic mechanisms'? Discuss the dynamic analysis of elastic mechanism.[5]
 - b) Explain the effect of inertia on force analysis of mechanism. [5]
- **Q5)** A straight line mechanism is shown in Fig. 0.2. Find the inflection circle for the motion of the coupler. Also determine radius of curvature of coupler point B $O_2A = AC = AB = 100$ mm. [10]

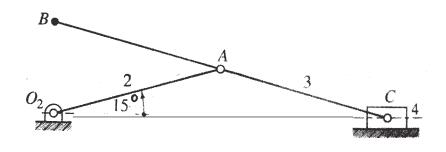


Fig. 02

Q6) Synthesize a four bar mechanism to generate a function $y = x^2 - x$ where $1 \le x \le 4$. Assuming initial and final positions of input link at 30° and 120° respectively whereas for output link 70° and 160° respectively. Determine x, y, $\theta \phi$ corresponding to three precision positions. The grounded link is horizontal and of 100 mm length, input link is 40 mm long. [10]

Q7) a)	Explain Matrix method of analysis of spatial mechanisms.	[5]

b) Explain in detail Hartmann construction. [5]

