Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat No.

[5152]-16**3**

S.E. (Computer Engineering)

DIGITAL ELECTRONICS AND LOGIC DESIGN

(First Semester) EXAMINATION, 2017

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Attempt Q. No. 1 Or Q. No. 2, Q. No.3 Or Q. No. 4, Q. No. 5 Or Q. No. 6, Q. No. 7 Or Q. No. 8.
 - Figures to the right indicate full marks.
 - Assume suitable data, if necessary.
- Do the required conversions for the following numbers. [6] 1. (a)
 - $(310.56)_{10} = ($ (i)
 - $(5462)_8 = ()_{16}$ (ii)
 - $(6516)_{10} = ()_{16}^{16}$
 - Define the following terms for TTL family: (*b*)
 - (i)Power dissipation
 - Speed of Operation. (ii)
 - Explain two input CMOS NOR gate with neat diagram. [4] (c) Or
- Minimize the following functions using K-map and realize using 2. (a)logic gates.

$$F(A,B,C,D) = \sum m (1, 5, 7, 9, 11)$$
 [4]

Perform the following operation using 2's complement method (b) $(35)_{10} - (18)_{10} = (?).$ [2]

	(c)	Explain the working of three input TTL NAND gate with Totem
		pole output. [6]
3.	(a)	Implement the following function using 4: 1 multiplexer
		$F(A,B,C,D) = \sum_{m} (1, 3, 7, 9, 11, 14, 15)$ [4]
	(<i>b</i>)	Convert the following Gray code numbers to Binary: [2]
		(i) $(101101)_2$
		$(ii) (111111)_2$
	(c)	What are the applications of FLIP- FLOPS? Explain the working
		of JK Flip-Flop. [6]
		Or
4.	(a)	Design four bit binary to gray code converter. Use logic gates
	1	as per your design and requirement. [6]
	<i>(b)</i>	Design MOD 78 counter by using IC 7490 [6]
5 .	(a)	What is VHDL ? Explain different modelling styles of VHDL
		with suitable example. [7]
	<i>(b)</i>	What is ASM chart? Explain components of ASM chart. What
		are applications of ASM chart in digital system design?
		[6]
		Or
6.	(a)	Draw an ASM chart and state table for 3-bit Up counter having
		control input E: [7]
		(i) If control input $E = 0$: Counter remains in same state.
		(ii) If control input $E = l$: Counter goes to next state.
	(<i>b</i>)	What is difference between signal and variable in VHDL?
		Explain with an example. [6]
7.	(a)	Draw and explain the basic architecture of FPGA. [6]

- A combinational circuits is defined by the functions: (*b*) [7]F1 (A,B,C) = $\sum m$ (0, 2, 5, 7)
 - F2 (A,B,C) = $\sum m$ (0, 1, 6, 7)

Implement this circuit with PLA.

Or

- What is PLA? Explain input buffer, AND and OR matrix 8. (a)in PLA. [7]
 - What is CPLD? Give the difference between CPLD and FPGA. (*b*)

[6]