Total No. of Questions—8]

[Total No. of Printed Pages-4

Seat No.

[5152]-174

S.E. (I.T.) (I Sem.) EXAMINATION, 2017 FUNDAMENTALS OF DATA STRUCTURES (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. := (i) Answer any four questions.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Determine the output of the following 'C' statements: [6] a = 13, b = 25, c = 5, d = 4
 - $(1) \quad P = a \land b;$
 - (2) Q = ++a b;
 - (3) R = b++ + e;
 - (4) S = c > b? 1 : 0;

I = a < b < c;

(1)

- (5) T = sizeof(3.142);
- (6) U = d + = (d + = 3, 7, d);
- (b) Explain what is a recursive function. Write a recursive C function find the sum of digits of positive integer number. [6]

 Or
- 2. (a) Determine the output of the following 'C' statements: [6] a = 40, b = 30, c = 80, d = -2, e = 5

- (2) $J = d \gg 1$;
- (3) K = 10 & 20:
- (4) L = 10/20;
- (5) $M = a \mid b > a;$
- (6) $N = e^{-\Lambda} e$;
- (b) Write a C program to copy one text file to another. [6]
- **3.** (a) Why can't we return a local variable which is non-static by reference?
 - (b) Define time complexity of an algorithm. Explain big-oh, big-omega, big-theta with example. [4]
 - (c) Using merge sort algorithm, arrange the following the data in ascending order. Show all passes: [6] 25, 3, 55, 2, 60, 10, 50, 14, 36, 18

Or

4. (a) Explain sort stability.

(b) What is frequency count? Find the frequency count of the following code: [4]

 $\lceil 2 \rceil$

$$m = 10;$$

$$n = 12;$$

count = 0;

for (i = 0; i < m; ++i)

for
$$(j = 1; j < = n; j = j * 2)$$

count++;

(c) Consider an integer array P with following data: [6]

Using binary search, we need to check whether number 13 is existing in the array P.

Represent this search operation step by step.

5.	(a)	Write a C program to implement simple transpose method
		for sparse matrix. [6]
	(<i>b</i>)	Define a structure to represent a polynomial having three variables.
		Represent the following polynomial in computer memory using
		structure defined by you: [4]
		5x ³ y ² z 3x ² y ³ z ² 6xyz ³ 98
	(c)	Compare stack and queue data structures. [3]
		Or
6.	(<i>a</i>)	Write a C program to convert conventional matrix into sparse
		matrix. [6]
	(<i>b</i>)	Consider the following C statement [4]
	Jr.	int $A[4][5] = \{0\};$
		Assume : Each array element requires 4 bytes of memory
		Address of the 1st element in A is 1000.
		Find the address of the element A[3][4].
	(c)	What is ordered list? [3]
7.	(a)	Write C function to insert a node in doubly linked list
		at: [6]
		(1) the start of the list
		(2) the end of the list
		(3) after the position
	<i>(b)</i>	Write a node structure to represent GLL. Represent the following
		using GLL: [4]
		(A, B, (D, E, F), (G, H, (I, J), K), L)
	(c)	Write an ADT for singly linked list. [3]
		29.

[5152]-174 3 P.T.O.

- 8. Write C function to delete a node in singly linked list (a)[6]at:
 - the start of the list (1)
 - the end of the list (2)
 - after the position (3)
 - Write a node structure to represent GLL. Represent the following (*b*) using GLL: [4]
 - (1) (a, (b, c), d)
 - (2) (a, b, (c, d, (h, f), k))
 - list ov Explain advantages of linked list over array. [3]