Total No. of Questions—8]

[Total No. of Printed Pages—2

Seat	
No.	6

[5152]-573

S.E. (Information Technology) (First Semester) EXAMINATION, 2017

DIGITAL ELECTRONICS AND LOGIC DESIGN (2015 Course)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Answer Question 1 or 2, 3 or 4, 5 or 6 and 7 or 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Explain any three characteristics of Digital ICs. [6]
 - (b) Implement the following Boolean function using single 8:1 multiplexer: [6]

 $F(A, B, C, D) = \Sigma m(1, 4, 6, 9, 13)$

Or

- **2.** (a) Do the following
 - (i) $(7F)_{16} (5C)_{16}$ using 2's complement method
 - (ii) $(735.25)_{10} = (?)_{16}$
 - (iii) $(101011.111011)_2 = (?)_8 (?)_{16}$
 - (b) Simplify the following Boolean function using Quine MC-Clusky Technique F (A, B, C, D) = $\Sigma(0, 1, 3, 7, 8, 9, 11, 15)$. [6]
- 3. (a) Design and draw logic diagram of mod 45 counter using IC 7490
 - (b) Design sequence generator to generate the sequence 1011 using shift register IC 74194. [6]

P.T.O.

4.	(<i>a</i>)	Explain with a neat diagram Ring Counter. [6]
	<i>(b)</i>	Design flip-flop conversion logic to convert JK flip-flop to T
		flip-flop. [6]
5.	(a)	Draw the ASM chart for 2-bit binary Up/ Down counter with
		control input M such that if M =0 counter counts in Up direction
		and if M=1 Counter counts in Down Direction.
		Design the same using MUX Controller Method using D flip-
		flops. [7]
	<i>(b)</i>	Explain architecture of CPLD with the help of suitable diagram.
	,	[6]
		Or
6.	(a)	Design Full Adder using PLA [7]
	<i>(b)</i>	Compare CPLD and FPGA [6]
7.	(<i>a</i>)	Explain VHDL modeling styles with example. [7]
	<i>(b)</i>	Write VHDL program for 3:8 decoder. [6]
		Or
8.	(<i>a</i>)	What is VHDL? Write features of VHDL. Explain the structure
		of VHDL module. Define entity and architecture for 2 input
		OR gate. [7]
	<i>(b)</i>	Explain the difference between concurrent and sequential
		statements with an example. [6]
		3,8
		9.77
F=1 =0 ⁻	1 550	
[5152]]-573	2
		OR gate. [7] Explain the difference between concurrent and sequential statements with an example. [6]