Total No. of Questions—8]

[Total No. of Printed Pages—7

Seat No.

[5152]-511

S.E. (Mechanical/Sandwich/Auto.) (I Sem.) EXAMINATION, 2017 ENGINEERING MATHEMATICS—III

(2015 **PATTERN**)

Time: Three Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
 - (v) All questions are compulsory.
- 1. (a) Solve any two of the following:

[8]

- (i) $(D^2 + 13D + 36)y = e^{-4x} + \sinh x$
- (ii) $(D^2 2D + 2)y = e^x + \tan x$

(using method of variation of parameter)

(iii)
$$x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + 6y = x^5$$
.

(b) Using Fourier integral representation show that: [4]

$$\int_{0}^{\infty} \frac{\lambda^{3} \sin \lambda x}{\lambda^{4} + 4} d\lambda = \frac{\pi}{2} e^{-x} \cos x, \quad x > 0.$$

P.T.O.

- 2. (a) A body of weight 9.8 N is suspended from a spring having constant 4 N/m. Prove that the motion is one of the resonance if a force 16 sin 2t is applied and damping force is negligible. Assume that initially the weight is at rest in the equilibrium position.
 [4]
 - (b) Solve any one: [4]
 - (i) Find the Laplace transform of

$$\cosh t \int_{0}^{t} e^{t} \cosh(t) dt$$

- (ii) Find the Inverse Laplace Transform of $\cot^{-1}\left(\frac{s-2}{3}\right)$.
- (c) Using Laplace transform solve the D.E.: [4 $y'' + 2y' + y = te^{-t}, \ y(0) = 1, \ y'(0) = -2.$
- 3. (a) If $\Sigma f = 27, \ \Sigma f x = 91, \ \Sigma f x^2 = 359,$

$$\Sigma fx^3 = 1567, \ \Sigma fx^4 = 7343.$$

Find the first four moments about origin. Also find μ_2 , μ_3 , μ_4 .

[5152]-511

- (b) An unbiased coin is thrown 10 times. Find the probability of getting exactly 6 heads and at least 6 heads using binomial distribution. [4]
- (c) Find the directional derivative of $xy^2 + yz^3$ at (2, -1, 1) along the line 2(x 2) = y + 1 = z 1. [4]

Or

4. (a) Obtain regression lines for the following data: [4]

 $x \rightarrow y$

6 0 9

2 11

10 5

4 8

8 7

- (b) Prove the following (any one): [4]
 - (i) $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$
 - $(ii) \quad \nabla \cdot \left[r \nabla \left(\frac{1}{r^3} \right) \right] = \frac{3}{r^4}.$

$$\overline{F} = (x+2y+4z)\overline{i} + (2x-3y-z)\overline{j} + (4x-y+2z)\overline{k}$$

is irrotational and hence find scalar function ϕ such that $\overline{F} = \nabla \varphi$.

5. (a) Evaluate :

$$\int_{C} \overline{F} \cdot d\overline{r}$$

where

$$\overline{F} = x^2 \overline{i} + xy \overline{j}$$

and C is the straight line y = x, joining (0, 0) and (1, 1).

(b) Prove that:

$$\iint\limits_{\mathbf{S}} (\phi \nabla \psi - \psi \nabla \phi) \cdot d\overline{\mathbf{S}} \iiint\limits_{\mathbf{V}} (\phi \nabla^2 \psi - \psi \nabla^2 \phi) d\mathbf{V}$$

(c) Use Stokes' theorem to evaluate:

[5]

$$\int_{C} \left(4y\overline{i} + 2z\overline{j} + 6y\overline{k} \right) \cdot d\overline{r}$$

where C is the curve of intersection of $x^2 + y^2 + z^2 = 2z$ and x = z - 1.

Or

6. (a) Evaluate :

[4]

$$\int_{C} \overline{F} \cdot d\overline{r}$$

where

$$\overline{F} = xy^2\overline{i} + y\overline{j}$$

and C is curve x = t, $y = t^2$, joining t = 0 and t = 1.

[5152]-511

[5]

$$\iint \overline{\mathbf{F}} \cdot d\overline{s}$$

where

$$\bar{F} = yz\bar{i} + zx\bar{j} + xy\bar{k}$$

and S is the upper part of the sphere

$$x^2 + y^2 + z^2 = 1$$

above xoy plane.

(c) Evaluate:

[4]

$$\iint\limits_{S} \left(\nabla \times \overline{F} \right) \cdot \hat{n} \, ds$$

where

$$\overline{F} = xy^2 \overline{i} + y\overline{j} + z^2 x\overline{k}$$

and S is the surface of a rectangular lamina bounded by

$$x = 0, y = 0, x = 1, y = 2, z = 0$$

7. (a) Solve the wave equation

[7]

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

with boundary conditions:

$$(i) \qquad u(0,\ t)\ =\ 0,\ \forall t$$

$$(ii) \quad u(l,\ t)\ =\ 0,\ \forall t$$

$$(iii) \quad \left(\frac{\partial u}{\partial t}\right)_{t=0} = 0,$$

$$(iv) \quad u(x, \ 0) = a \sin \frac{\pi x}{I}$$

(b) Solve the heat equation

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}$$

for the function u(x, t), subject to the following conditions:

[6]

$$(i) \qquad u(0, t) = 0$$

$$(ii) \quad u(l,\ t)\ =\ 0,\ \forall t$$

(iii)
$$u(x, 0) = x, 0 \le x < l$$

(iv)
$$u(x, \infty)$$
 is finite.

Or

8. (a) Solve the Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

subject to condition:

$$(i) \qquad u(x, \ 0) \ = \ 0$$

$$(ii) \quad u(x, l) = 0$$

$$(iii) \quad u(\infty, \ y) \ = \ 0,$$

$$(iv) \quad u(0, y) = a_0.$$

[5152]-511

(b) Use Fourier transform to solve:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < \infty, \quad t > 0$$

[7]

where u(x, t) satisfies the conditions:

$$(i) \qquad \left(\frac{\partial u}{\partial x}\right)_{x=0} = 0, \ t > 0$$

(ii)
$$u(x, 0) = \begin{cases} x & 0 < x < 1 \\ 0 & x > \end{cases}$$

$$(iii) \quad |u(x, t)| < m.$$