Total No. of Questions : 12]

P2450

[5153]-84

T.E.(Computer) DIGITAL SIGNAL PROCESSING (2008 Pattern) (Semester-I)

Time : 3 Hours] Instructions to the candidates:

- 1) Answers to the two sections should be written in separate answer books.
- 2) Answer any three questions from each section.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of Calculator is allowed.
- 6) Assume suitable data, if necessary.

SECTION-I

<i>Q1)</i> I	Explain different classification of signals with example. [OR	16]
Q 2) a	a) Define energy and power signal. Find whether the following signal is energy signal or power signal $x(n) = n n > 0$	an
	= 0 n < 0	[7]
ł	b) Test Linearity, Causality, and time invariance systems of $y(n)=x(n)u(n)$.[9]
Q3) a	a) Obatin DTFT of different standard signals. [12]
ł	b) Explain clearly: Circular convolution.	[6]
OR		
Q4) a	a) Compare DFT with DTFT.	[4]
Ē	b) Why the result of circular and linear convolution is not same?	[4]
C		10]
	$x(n) = \{2, 0, 0, 1\}$ and $h(n) = \{4, 3, 2, 1\}$.	
Q5) Derive and explain Radix-2 Decimation in time (DIT) FFT algorithm for		
-		16]
OR		
Q6) a		[4]
- · ·	b) Explain different properties of twiddle factor.	[9]
	c) Define ROC and state significance of ROC.	[3]
, c		[2]

[Max. Marks :100

SEAT No. :

SECTION-II

- Q7) a) Explain the method of simple geometric interpretation to obtain the frequency response of DT system. [10]
 - b) Determine impulse response of a system: y(n)=x(n)-x(n-1)-3y(n-1)-2y(n-2) [8] OR
- (Q8) a) Define system function H(z). How it is obtained from the general difference equation? [6]
 - b) what is pole zero plot? State condition for causality and stability in terms of ZT. [6]
 - c) Determine H(z) and draw a pole zero plot for a system [6]

$$x(n)+x(n-1)=y(n)+\frac{3}{4}y(n-1)+\frac{1}{8}y(n-2)$$

- Q9) a) Explain Gibb's phenomenon associated with FIR filter design. What are the desirable features of window function to improve the frequency response? [10]
 - b) The transfer function of analog filter is: $H(s) = \frac{3}{(s+2)(s+3)}$ with

$$T_s=0.1$$
 sec. Design the digital IIR filter using BLT method. [6]

- Q10)a) To design the digital IIR filter, analog IIR filter is designed first, why? What are the different methods to design IIR filters? Explain any one in brief.
 - b) What are the advantages and disadvantages of FIR filter. [6]
- **Q11**)a) Obtain linear phase FIR filter of $H(z) = \left(1 + \frac{z^{-1}}{4} + \frac{z^{-2}}{4} + z^{-3}\right).$ [6]
 - b) Compare DSP processor and general purpose processors. [6]
 - c) What are the advantages of representing the digital filter in block diagram form? [4]

Q12)a) Draw Direct Form-I IIR filter structure for:
$$H(z)=3+\frac{4z}{(z-0.5)}-\frac{2}{(z-0.25)}$$
 [8]

b) Explain the application of DSP in speech processing. [8]

[5153]-84