Total No. of Questions : 12]

P2451

[5153]-85

T.E. (Computer Engieneering) THEORY OF COMPUTATION (2008 Pattern) (Semester - I)

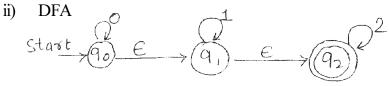
Time : 3 Hours]

[Max. Marks : 100

[Total No. of Pages : 3

SEAT No. :

Instructions to the candidates:


- 1) Attempt Q. 1 or 2, Q.3 or 4, Q.5 or 6, Q.7 or 8, Q.9 or 10, Q.11 or 12.
- 2) Answer to the two section should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Assume Suitable data, if necessary.

SECTION - I

- Q1) a) Give the Mealy and Moore machine for the following processes. "For input from (0 + 1)*, if inputs ends in 101, output X; if input ends in 110, output Y, otherwise output Z".
 - b) Let L be a language. It is clear from the definition that $L^+ \subseteq L^*$. Under what circumstances are they equal? [6]
 - c) Define the following terms with example:
 - i) Symbol
 - ii) Alphabet
 - iii) DFA

OR

- **Q2)** a) Consider the following NFA with ε transitions. Convert this NFA to [10]
 - i) NFA without ε -moves

- b) Construct NFA and DFA for accepting all possible strings of zeroes and ones not containing 101 as a substring. [6]
- c) Differentiate between NFA and DFA. [2]

[6]

Q3) a)	For the following regular expression, draw an FA recognizing the corresponding language. [6]
	r = (1 + 10)*0
b)	Let L be any subset of 0*. Prove that L* is regular. [6]
c)	Write a short note on Ardens theorem.[4]
	OR
Q4) a)	For each of the following draw DFA, [8]
	i) $(11+00)^*$
	ii) (111+100)*.0
b)	Explain the use of regular expressions in unix with any one example. [4]
c)	Write short note on pumping lemma for regular expression[4]
Q5) a)	In each case, find a CFG generating the given language: [9]
	i) The set of odd length strings in $\{a, b\}^*$ with middle symbol a
	ii) The set of even length strings in $\{a, b\}^*$ with the two middle symbosl equal
	iii) The set of odd length strings in {a, b}* whose first, middle and last symbols are all same
b)	Define Normal Forms with the help of example. [4]
c)	Write a short note on Application of CFG. [3]
	OR
Q6) a)	Describe the language generated by each of these grammars. Justify your answer with an example. [12]
	i) $S \rightarrow a S a b S b \varepsilon$
	ii) $S \rightarrow a S a b S b a b$
	iii) $S \rightarrow a S b b S a \varepsilon$
b)	For right linear grammar given below obtain an equivalent left linear grammar. [4]

 $S\,\rightarrow\,10A\,|\,01$

$$A \rightarrow 00A|1$$

[5153]-85

SECTION - II

(07)	Specify following with respect to Pugh Down Automates [9]
Q7) a)	Specify following with respect to Push Down Automata: [8]
	i) Definition.
	ii) Transition Function.
	iii) Example.
b)	Construct PDA equivalent to CFG of following productions: [10]
	$S \rightarrow 0BB, B \rightarrow 0S, B \rightarrow 1S, B \rightarrow 0$
	OR
Q8) a)	Construct a PDA accepting $\{a^n.b^n \mid n \ge 1\}$ [10]
b)	Explain how DPDA is different from NPDA with Example. [8]
Q9) a)	Construct PDA accepts Language generated by the CFG. [8] $S \rightarrow S + S$ $S \rightarrow S * S$ $S \rightarrow 4$
b)	Define post machine. Compare FA, PDA, TM. [8]
0)	OR
O(10)	
<i>Q10)</i> a)	What is Post Correspondence Problem? Explain with Example. [8]
b)	Construct Turing Machine for finding 2's Complement of a binary number. [8]
Q11) a)	Construct Turing Machine for reversing a string. [8]
b)	Write short note on: [8]
	i) Halting Problem of Turing Machine
	ii) Write short note on Universal Turing Machine
	OR
Q12) a)	Define Following Terms: [8]
	i) Recursive Language
	ii) Recursive Enumerable Language
b)	Prove the theorem - "if L1 and L2 are recursively enumerable languages
-)	over Σ then L1 \cup L2 and L1 \cap L2 are also recursively enumerable".[8]

[5153]-85