Total No.	of Qu	estions	:12]
-----------	-------	---------	------

10tai 110. 01	Questions	• 1
P2466		

SEAT No.:	
[Total	No. of Pages :4

[5153] - 100 T.E. (I.T.)

DESIGNAND ANALYSIS OF ALGORITHMS

(2008 Course) (Semester - II) (314455)

Time: 3 Hours] [Max. Marks:100

Instructions to the candidates:

- 1) Draw neat diagrams wherever necessary.
- 2) Assume suitable data if necessary.
- 3) Figures to the right indicate full marks.

SECTION -I

- **Q1)** a) Find out the time complexity for the recurrence equation as follows: [8]
 - i) T(n) = T(n/2)+1
 - ii) T(n) = 2T(n/2) + n

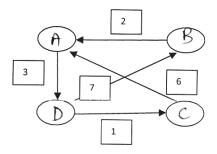
Also explain whether above equations belong to Searching or Sorting.

b) Prove by contradiction - "there are infinitely many prime numbers". [8]

OR

- Q2) a) Suppose you have algorithms with running time listed below. How much faster will they get if input size is reduced by half.[8]
 - i) $100n^2$
 - ii) n log n
 - iii) 2ⁿ
 - iv) n²
 - b) Write an algorithm to search an element in an array of size n. Calculate complexity of this algorithm. [8]

P.T.O.


- **Q3)** a) What is divide and conquer strategy? Explain Master's theorem. [8]
 - b) Explain convex hull problem with a suitable example. [8]

OR

- **Q4)** a) Which algorithm uses the principle of decrease-by-half? Why is it called so? [8]
 - b) Write Kruskal's algorithm. Comment on its complexity. [8]
- **Q5)** a) What is memory function? Explain why it is advantageous to use memory functions. [9]
 - b) Explain with suitable example Warshall's algorithm. [9]

OR

Q6) Find all-pairs shortest path using Floyd's algorithm for the following weighted graph.[18]

SECTION -II

Q7) a) Explain the following terms:

[8]

Live nodes, expanding nodes, bounding function and solution space.

b) What are planar graphs? Explain graph coloring with suitable examples.[8]

OR

Q8) What is backtracking? What kind of problems does it solve? Solve the following knapsack problem using backtracking.[16]

i	p_{i}	\mathbf{W}_{i}	
1	24	15	
2	15	10	
3	25	18	

For n=3 and m=20.

Q9) a) Explain the terms:

[9]

Branch and Bound, LC, LIFO and Bounding function. How are LIFO and LC techniques different?

b) Differentiate between Backtracking and Branch and Bound. [9]

OR

Q10)Solve the following job scheduling problem using LCBB. [18]

Job	p_{i}	d_{i}	t _i	
1	5	1	1	
2	10	3	2	
3	6	2	1	
4	3	1	1	

Where P_i : indicates penalty if i^{th} job is not completed by deadline d_i . pi has burst time t_i . We want to have minimum penalty.

- Q11)a) What is a deterministic and non-deterministic algorithm? Write a non-deterministic algorithm for searching am element. [8]
 - b) Prove that: A clique problem is NP-complete. [8]

OR

- Q12)a) Waht is satisfiability problem? Explain DNF and CNF. [8]
 - b) Explain NP-Complete and NP-Hard. Give examples. Are all NP-Complete problems NP-Head or vice versa? Justify. [8]

EEE