SEAT No. :

P1990

[Total No. of Pages : 3

[5254] - 161

B.E. (Computer Engg.) DESIGN AND ANALYSIS OF ALGORITHMS (2008 Pattern) (Semester - I)

Time : 3 Hours]

[Max. Marks : 100

Instructions to the candidates :

- 1) Answer any 3 questions from each section.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Black figures to the right indicate full marks.
- 5) Assume suitable data, if necessary.

SECTION - I

- *Q1*) a) Write Greedy Prim's minimum spanning tree algorithm. Also explain it with suitable example. [10]
 - b) Prove by contradiction: There exist two irrational numbers x & y such that x^y is rational.
 [8]

OR

- **Q2**) a) Let the number of jobs be 4, and the associated profits with these jobs be $P_1 = 100$, $P_2 = 10$, $P_3 = 15$, P4 = 27 respectively. The deadline for completion of these jobs $d_1 = 2$, $d_2 = 1$, $d_3 = 2$ and $d_4 = 1$ respectively for the four jobs. Find the feasible solutions and an optimal solution for these Job sequencing using Greedy approach. [7]
 - b) Write an algorithm to solve Optimal Merge Patterns problem. [5]
 - c) Write an algorithm for Quick Sort. State its time complexity. [6]
- Q3) a) Solve the instance of 0/1 knapsack problem using dynamic programming: [8] n = 4, m = 25 (P₁, P₂, P₃, P₄) = (10, 12, 14, 16) (W₁, W₂, W₃, W₄) = (9, 8, 12, 14)
 b) What is Travelling Salesperson problem? Explain how it is solved using
 - b) What is Travelling Salesperson problem? Explain how it is solved using dynamic programming. [8]

P.T.O.

- *Q4)* a) State multistage graphs problem and explain how it can be solved using forward approach.[8]
 - b) Write an algorithm for finding optimal binary search tree using dynamic programming strategy. What is its computing time? [8]
- Q5) a) Explain the algorithm for 0/1 knapsack problem using backtracking. [8]
 - b) Write the control abstraction for LC- search. [6]
 - c) Differentiate between "backtracking" and "branch and bound" strategies. [2]

OR

- *Q6)* a) Write backtracking algorithm form coloring of the graph. Determine the time complexity of the same. [8]
 - b) Explain branch and bound algorithm for Hamiltonian Cycles problem.[8]

SECTION - II

Q 7)	a)	Explain how Directed Hamiltonian Cycle (DHC) reduces to Travelli Salesperson decision Problem (TSP).	ing [7]		
	b)	Prove that the sum of subsets problem is NP-Hard, given that excover problem is NP-Hard.	act [7]		
	c)	Explain non deterministic algorithms.	[4]		
OR					
Q 8)	a)	Prove that CNF- satisfiability reduces to clique decision problem.	[6]		
	b)	Explain any two NP-Hard graph problems.	[6]		
	c)	Explain Cook's Theorem. Explain P and NP.	[6]		
Q9)	a)	Write an algorithm for prefix computation. Determine its time complexit	•		
			[8]		
	b)	Explain in detail logarithmic time merging algorithm with example.	[8]		

[5254] - 161

2

<i>Q10</i>)a)	Explain all pairs shortest paths. Also give parallel shortest paths algor	ithm. [8]			
b)	Write the odd-even merge sort algorithm and explain it with an examp				
<i>Q11</i>)a)	Explain how Huffman's technique is used for data coding.	[8]			
b)	Explain Convex Hull, Quick Hull and techniques to solve them.	[8]			
OR					
Q12)a)	Explain any two heuristic search algorithms.	[8]			
b)	Explain any two image edge detection algorithms.	[8]			

$\bigtriangledown \bigtriangledown \bigtriangledown \bigtriangledown \bigtriangledown$

3

[5254] - 161

OR