| Total No. of Questions: 12] | SEAT No. :              |  |
|-----------------------------|-------------------------|--|
| D2021                       | [Total No. of Pages : 3 |  |

PZUZI

### [5254]-193

# **B.E.** (Information Technology) **REAL TIME SYSTEMS (Theory)**

## (2008 Pattern) (Elective - III) (Semester - II)

Time: 3 Hours [Max. Marks: 100

*Instructions to the candidates:* 

- Answers to the two sections should be written in separate answer books.
- 2) Answer any three questions from each section.
- *3*) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right side indicate full marks.
- 5) Use of Calculator is allowed.
- Assume Suitable data if necessary. **6**)

#### **SECTION - I**

- Describe any specific real time application. Draw neat block diagram of **Q1**) a) application. [8]
  - What are the varies factor, that are to be consider while estimating the b) program run time. Explain any two in brief. [8]

OR

- **Q2**) a) Describe in brief the effect of the following in estimation the run time of a [8] program:
  - i) A pipelined architecture
  - Use of cache ii)
  - Explain different issues in real time computing. Explain various b) characteristics of Real Time System. [8]
- **Q3**) a) List down the suitable assumption for preemptive Earliest Deadline First Algorithm. In what way preemptive Earliest Deadline First Algorithm is different than Deadline Monotonic Algorithm.. [10]
  - b) Describe the priority inheritance protocol. Give an example to show how this protocol can lead to deadlock. [8]

OR

**Q4)** a) Consider: Task 1 = (p1,el) = (2,0.9) [10] Task 2 = (p2,e2) = (5,2.3)

- i) Find total processor utilization
- ii) Find necessary and sufficient condition
- How are mode change implemented when the priority ceiling protocol is used to handle the access to critical section.
- Q5) a) List down and explain the different data typing features that could be useful in a real time programming language.[6]
  - b) Describe the skeleton and optimistic algorithm under the two phase approach to improve predictability of real time transaction. [10]

OR

- Q6) a) Explain how the two phase locking approach used in pessimistic concurrency control is disadvantage to real time system. How can it be modified to overcome the problem?[10]
  - b) State the three properties that mechanisms must have for exception handling at run time in Ada language. [6]

#### **SECTION - II**

- Q7) a) Explain Virtual Time Carrier Sensed Multiple Access (VTCSMA) algorithms with flow chart.[6]
  - b) Explain the features of Polled Bus Protocol. What happens if two nodes A and B are starting arbitration simultaneously?[8]
  - c) What is Timed Token protocol? How it is implemented. [4]

[10]

OR

**Q8**) a) Write a short notes on(Any Two):

- i) Stop & Go Multihop Protocol.
- ii) Disk Scheduling Algorithms
- iii) Resources reservation protocol
- b) Discuss the various communication medium used in real time networking.[8]

| <b>Q9</b> ) a) | List all the capabilities of KTOS and explain any tw                                          | vo of them. [8]             |
|----------------|-----------------------------------------------------------------------------------------------|-----------------------------|
| b)             | Draw the block diagram of VxWorks real time of describe its functionality.                    | perating system and [8]     |
|                | OR                                                                                            |                             |
| <b>Q10</b> )a) | Draw the block diagram of task management se functionality of RTOS Kernals.                   | ervices. Explain the        |
| b)             | Explain in detail and draw the block diagram of RT                                            | Linux. [6]                  |
|                |                                                                                               |                             |
| <b>Q11</b> )a) | Describe the following structure for hardware redur                                           | ndancy: [8]                 |
|                | i) Static Pairing                                                                             |                             |
|                | ii) Shift out Redundancy                                                                      |                             |
| b)             | Explain Byzantine's algorithm for fault tolerance with the interactive consistency condition. | ith an example. State [8]   |
|                | OR                                                                                            |                             |
| <b>Q12</b> )a) | Explain reliability model for hardware redundancy. S require for permanent fault only.        | State reliability model [8] |
| b)             | Define the following term:                                                                    | [8]                         |
|                | i) Hardware fault                                                                             |                             |
|                | ii) Fault Latency                                                                             |                             |
|                | iii) Error latency                                                                            |                             |
|                | iv) Backward error require                                                                    |                             |
|                | -                                                                                             |                             |
|                |                                                                                               |                             |

