SEAT No. :

P1946

[Total No. of Pages : 3

[5254]-47

B.E. (Mechanical) (Semester - II) INDUSTRIAL HEAT TRANSFER EQUIPMENTS (2008 Pattern) (Elective - IV)

[Max. Marks : 100

Instructions to the candidates:

Time : 3 Hours]

- 1) Answer any three questions from each section.
- 2) Answers to the two sections should be written in separate books.
- 3) Neat diagrams must be drawn wherever necessary.
- 4) Figures to the right indicate full marks.
- 5) Use of electronic pocket calculator is allowed.
- 6) Assume suitable data, if necessary.

SECTION - I

Q1)	a)	How heat exchanger classified according to construction features?	[6]
	b)	State advantages and limitations of plate heat exchanger.	[4]
	c)	Explain heat exchanger design methodology.	[6]
		OR	
Q2)	a)	Explain fluidised bed heat exchanger?	[5]
	b)	What are baffle plates how they classified?	[5]
	c)	Explain methods to determine heat exchanger effectiveness.	[6]

- Q3) a) Explain Shell and tube heat exchanger basic design procedure. [5]
 - b) Printed-Circuit Heat Exchangers? [3]
 - c) In shell and tube feed water heater, cold water at 15°C flowing at the rate of 180kg/h is preheated to 90°C by flue gases from 150°C flowing at the rate of 900 kg/h. The water flows inside the copper tubes ($d_i = 25 \text{ mm}$, $d_o = 32 \text{ mm}$) having thermal conductivity $k_w = 381 \text{ W/m.K.}$ The heat transfer coefficients on gas and water sides are 120 and 1200 W/m².K, respectively. The fouling factor on gas and water sides is 0.002m²K/W. Determine the flue gas outlet temperature, the overall heat transfer coefficient based on the outside tube diameter, and the true mean

temperature difference for heat transfer. Consider specific heats C_p for flue gases and water as 1.05 and 4.19 J/g.K respectively, and the total tube outside surface are as $5m^2$. There are no fin inside or outside the tubes, and there is no fouling on gas side. [8]

OR

Q4) a)	What is TEMA standards?	[5]
b)	Explain Shell and tube heat exchanger in detail.	[5]
c)	Explain Kern Method.	[6]

- **Q5)** a) Explain plate fin heat exchanger.
 - b) Air enters the core of finned-tube exchanger of the type shown in figure 1 at 1 atm and 30°C. The air flow at a rate of 1500kg/h perpendicular to the tube and exit with a mean temperature of 100°C. The core is 0.5m long with a 0.25 m² frontal area. Calculate the total pressure drop between the air inlet and outlet and the average heat transfer coefficient on the air side.

[9]

[9]

OR

- *Q6)* a) Explain tube fin heat exchanger.
 - b) Air at 2 atm and 500K with a velocity of u_{∞} =20m/s flows across a compact heat exchanger matrix having the configuration shown in figure 2 (surface 11.32- 0737-S-R). Calculate the heat transfer coefficient and the frictional pressure drop. The length of the matrix is 0.8m. [9]

SECTION - II

Q7) a)	Explain horizontal shell type condensers with diagram.	[8]
b)	Which are the common heat exchanger types used in refrigeration air conditioning industry.	and [8]
	OR	
Q8) a)	Explain vertical tube side condensers with diagram.	[8]
b)	Explain :	
	i) Water cooling evaporator	[4]
	ii) Air cooling evaporator	[4]

[5254]-47

2

Q9) a)	What is the principle of operation of cooling tower?	[6]				
b)	State and explain different cooling tower material.	[6]				
c)	What is hyperbolic cooling tower?	[4]				
OR						
Q10) a)	Explain Psychometric Analysis of Air Passing through cooling towe	er. [8]				
b)	Explain Combined Flow Coil Evaporative Cooling Tower.	[4]				
c)	Factors to be considered for selecting cooling tower.	[4]				
Q11) a)	What is liquid cooling?	[6]				
b)	Why we need to cool electrical applications?	[6]				
c)	Explain wick structure of heat pipe.	[6]				
OR						
Q12) a)	What is forced electronic cooling.	[6]				
b)	Explain "cooling personal computers".	[6]				
c)	What is immersion cooling and explain in brief two closed loop Syst	tem? [6]				

