P2112

SEAT No. :

[Total No. of Pages : 3

[5254]-503

B.E.(Civil)

STRUCTURAL DESIGN AND DRAWING - III

(2012 Pattern)

Time : 3 Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2; Q.3 or Q.4; Q.5 or Q.6; Q.7 or Q.8; and Q.9 or Q.10
- 2) Figures in bold to the right, indicate full marks.
- 3) IS 456, IS 1893, IS 1343, IS 3370 (Part II and Part IV) and IS 13920 are allowed in the examination.
- 4) The designs should comply with the latest codal provisions.
- 5) If necessary, assume suitable data and indicate clearly.
- 6) Use of electronic pocket calculator is allowed.
- Q1) a) Write shortnote on types of prestressing steel and explain the necessity of use high tensile strength steel in prestressing. [4]
 - b) A simply supported pre-stressed concrete beam having 9 m effective span is 250 mm wide and 500 mm deep. It carries a distributed load of intensity 6kN/m inclusive of self-weight. Pre-stressing force of 200 kN applied through a straight tendon located at 100 mm below the centroidal axis of the beam. Plot the pressure line. [6]

OR

- Q2) a) Explain how the bearing stresses behind the anchorage are taken care of.[4]
 - b) A prestressed concrete beam having cross-section 250mm × 650mm deep is subjected to an effective prestressing force of 1380 kN along the longitudinal centroidal axis. The cables are symmetrically placed over bearing plate of 200mm × 400mm size. Find the bursting force and design the anchorage reinforcement. [6]

P.T.O.

- Q3) a) Explain any four losses in pre-stressed member.
 - b) A residential building of size $6m \times 6m$ having two equal bays has a height of 10.5 m with each storey having height 3.5 m. The building is located in zone III. Soil conditions is medium stiff. OMRF is adopted. DL=10 kN /m² and IL=2 kN/m² Determine the design seismic forces for the building using seismic coefficient method as per IS 1893 and show the distribution of lateral forces with the building height. [6]

OR

- Q4) a) Write a note on the serviceability limit state design criteria of pre- stressed member focusing on limits on compressive stress and crack control. [4]
 - b) The bending moments developed due to gravity and earthquake loads for a continuous beam ABC are as follows : [6]

Bending				Mid-span moments	
Moments	Support moments at (kN-m)			for span (kN-m)	
due to	А	В	С	AB	BC
Lateral load	± 90	± 90	± 90	0	0
Dead load	- 50	- 40	- 50	+ 20	+ 20
Dead load +					
Imposed	- 75	- 65	- 75	+ 37	+ 37
load					

Calculate the design moments developed due to gravity and earthquake loads using load combinations as per IS : 1893.

- **Q5)** a) Explain with proper sketches, active and passive earth pressure diagram for a cantilever retaining wall with a shear key provided underneath the stem. [4]
 - b) Suggest a cantilever retaining wall with levelled backfill without a heel projection for retaining soil with the data given below and perform the stability analysis for it. The overall height of the wall = 5m, Weight of soil = 16kN/m³. Angle of repose = 30° , Foundation shall not project on the retained side, SBC of soil = 200kN/m², Coefficient of friction = 0.45. [12]

OR

Q6) Design a L-shaped retaining wall to retain a backfill of 3.2 m. The backfill is horizontal. The unit weight of the soil is $18 \text{ kN} / \text{m}^3$, angle of repose = 30° , SBC of soil = 180 kN/m2. Sketch the details of reinforcement in the wall and base slab. [16]

[5254]-503

[4]

- **Q7)** A rectangular slab beam type combine footing is to be provided for two columns A and B located 4.5 m apart. They carry a service load of 650 kN and 1000 kN each. The sizes of columns are 400 mm × 400 mm and 600 mm × 600 mm respectively. The SBC of soil is 275 kN/m². Proportion the base slab for each of following conditions separately with comments on feasibility of footing.[16]
 - a) Width of slab restricted to 1.75 m
 - b) The projection of the footing to the length of footing beyond axis of column A is restricted to 0.75 m
 - c) Column A is boundary column
 - d) Column B is boundary column.

OR

- *Q8)* A rectangular slab type combine footing is to be provided for two columns A and B located 4.5 m apart. They carry a service load of 650 kN and 1000 kN each. The sizes of columns are 400 mm \times 400 mm and 600 mm \times 600 mm respectively. The SBC of soil is 275 kN/m². Design the footing using M25 grade of concrete and steel of grade Fe 500. Sketch the reinforcement details. **[16]**
- *Q9*) a) Explain the approximate analysis for [12]
 - i) A circular water tank fixed at base.
 - ii) Short wall of rectangular tank
 - iii) Long wall of rectangular tank for condition L/B < 2
 - b) Explain the limit state of serviceability for design of section of water tank subjected to both bending and direct tension. [6]

OR

Q10) Design the long wall for a rectangular water tank open at top resting on ground having a size of 8.0 m \times 3 m \times 2.5 m high. Use M 30 and Fe 500 grade material. Sketch details of reinforcement for the wall. [18]

രുശുരു