P2114

SEAT No. :

[Total No. of Pages : 4

[5254]-505

B. E. (Civil) (Semester - I) SYSTEMS APPROACH IN CIVIL ENGINEERING (2012 Pattern) (Elective - I)

Time : 2¹/₂ Hours]

[Max. Marks : 70

Instructions to the candidates:

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q10.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right side indicate full marks.
- 4) Assume Suitable data if necessary.
- *Q1*) a) State application of optimization in Civil Engineering? [4]
 - b) State whether following functions are Convex or Concave [6]
 - i) $f(x) = x^4 + x^2 + 10 x$
 - ii) $f(x) = x^3 + x^2 15x$

OR

- Q2) a) What are the advantages of Newton's method over steepest gradient technique. [4]
 - b) Minimize $Z = 3x_1^2 + 4x_2 5x_1x_2 8x_2$, Subject to $x_1 + x_2 = 4$ by Lagrange's multiplier method. [6]
- Q3) a) Find the sequence that minimize the total elapsed time to complete the job in the order of AB [6]

Machine	Jobs Processing Time in Minutes				
	1	2	3	4	5
A	3	10	6	4	9
В	7	12	8	5	2

b) Explain Kendal's Notation.

[4]

- Q4) a) Explain the process of sequencing of n jobs on three machines. [4]
 - b) Ships arrive at a port at an average rate of 8 ships per week and their arrival pattern follows Poisson distribution. On an average 12 ships are loaded and unloaded with exponential distribution per week. Determine[6]
 - i) The average queue length and the number of ships in the system.
 - ii) The average time spent by the ships waiting in the queue and in the system.

[12]

Q5) a) Write short note on characteristics of Dynamic Programming. [4]

Node	Distance	Node	Distance
	in kms		in kms
A-B	14	A-C	15
A-D	18	B-E	19
B-F	21	C-E	25
C-F	30	D-E	24
D-F	20	E-G	14
E-H	18	E-I	15
F-G	16	F-H	17
F-I	22	G-J	22
H-J	24	I-J	23

b) Find shortest path for a network with following data

OR

Q6) a) Discuss Dynamic Programming applications to business. [4]

b) Maximize the sales by allocating salesman to different zones as per amount of sales contribution as given below [12]

No of salesman	Zone 1	Zone 2	Zone 3		
	Profitability in thousands of Rs.				
0	12	13	14		
1	14	15	18		
2	15	18	23		
3	17	20	27		
4	19	23	31		
5	20	27	35		
6	25	30	40		

Q7) a) Minimize
$$Z = x_1 - 3x_2 + 2x_3$$

Subject to $3x_1 - x_2 + 2x_3 \ge 7$
 $-2x_1 + 4x_2 \le 12$
 $-4x_1 + 3x_2 + 8x_3 \le 10$

$$x_1, x_2, x_3 \ge 0$$

Use Simplex method to solve the problem.

b) What do surplus variable and slack variables represent in Simplex method? Also, explain when these are used. [4]

OR

- **Q8)** a) What is the difference between simplex solution procedure for a maximization and minimization problem? [4]
 - b) Maximize $Z = 3x_1 + 2x_2 + 5x_3$ [12] Subject to $x_1 + x_2 + x_3 \le 9$ $2 x_1 + 3 x_2 + 5x_3 \le 30$ $2x_1 - x_2 - x_3 \le 8$ $x_1, x_2, x_3 \ge 0$

Use Simplex method to solve the problem.

[5254]-505

[12]

- Q9) a) What do you understand by a balanced and unbalanced transportation problem? How are the unbalanced problems solved? [8]
 - b) Solve following assignment problem to minimize time (in minutes) required by 5 operators on 5 machines [10]

		Ι	II	III	IV	V
Operators 1	А	10	17	27	18	28
	В	11	24	16	19	33
	С	25	26	12	20	29
	D	32	23	15	13	34
	Е	31	22	14	21	30

Machines

OR

- *Q10*)a) Give the mathematical formulation of an assignment problem with the help of an example. [6]
 - b) Calculate transportation cost for following problem using Column minima, row minima and least cost method. [12]

		D_1	D_2	D ₃	D_4	Supply
Origins	\mathbf{O}_1	20	18	16	20	75
	O_2	14	12	18	15	75
	O ₃	17	13	11	17	50
	O_4	16	14	12	18	100
Demand		100	50	100	50	-

Destinations

രുന്ദര

[5254]-505