Total No. of Questions : 10]

P2148

SEAT No. :

[Total No. of Pages : 5

[5254] -544

B.E. (Mechanical)

REFRIGERATION AND AIR - CONDITIONING EQUIPMENT DESIGN

(2012 Pattern) (Elective - III)

Time : 2¹/₂ Hours] Instructions to the candidates: [Max. Marks :70

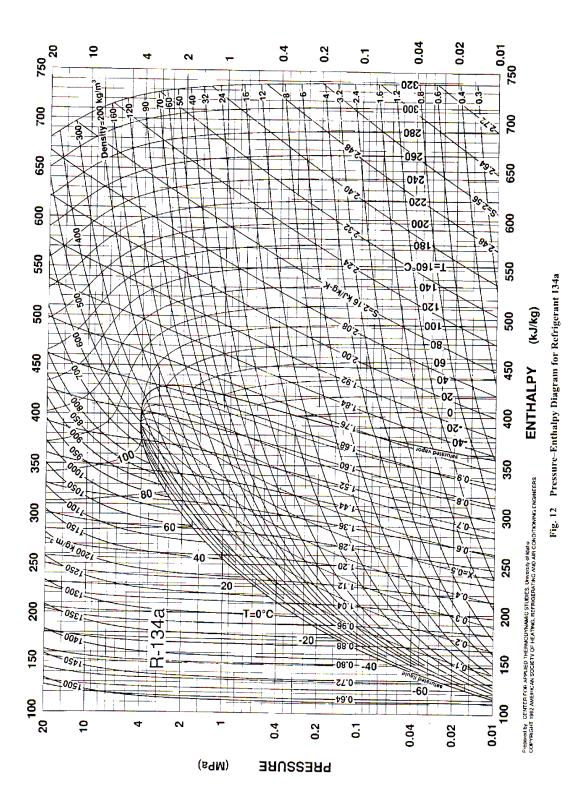
- 1) Answer three questions out of 6.
- 2) Solve Q.1 or 2, Q.3 or 4, Q.5 or 6.
- 3) All the three questions should be solved in one answer book and attach extra supplements if required.
- 4) Draw Diagrams wherever necessary.
- 5) Use of scientific calculator is allowed.
- 6) Assume suitable data where ever necessary.
- *Q1*) Explain the performance characteristic curves of reciprocating and centrifugal compressors. [10]

OR

- Q2) A typical two evaporator R 134a system working with individual compressor and individual expansion valve has 30°C(20TR) and 5°c (30TR) evaporating temperature and 40°C condensing temperature. Calculate [10]
 - a) Overall COP
 - b) Mass flow rate of refrigerant through each compressor
 - c) Cooling capacity on the condenser
 - d) Displacement volume required for each compressor if their vol. eff. = 0.9
- Q3) a) List out the limitations of VCS for the production of low temperatures.[5]
 - b) Explain the construction working of externally compensated regulating valve. [5]

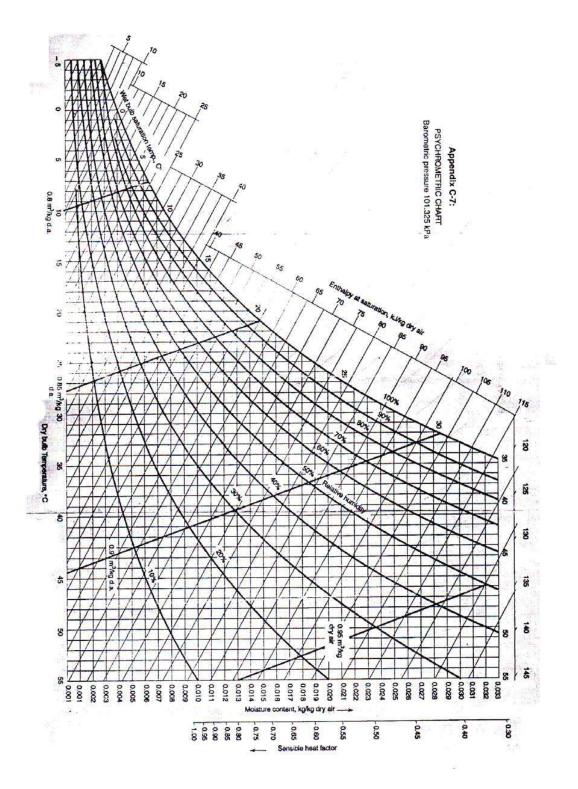
OR

Q4) a)	Write a short note on defrost method for multiple evaporator systems.[5]
b)	Write a short note on : [5]
	i) Liquefaction of nitrogen
	ii) Liquefaction of hydrogen
Q5) a)	Write a short note on "Baudelot Cooler'. [4]
b)	Design R - 22 condenser to meet the following conditions;[12]Refrigeration load30TRCondensing temperature37.78°CEvaporating temperature-1.11°CWater inlet temperature25.55°CWater flow rate per TR0.00757 m³/minHeat rejection factor1.013Maximum tube length & diameter3.6576 m & 2.54 cmFouling factor0.001 m²K/WHTC inner & outer side respectively6000 W/m².K & 1500 W/m².K
	OR
Q6) a)	Write a short note on 'Pump Circulation System''. [8]
b)	Explain the procedure of thermal design of shell and tube condensers.[8]
Q7) a)	A test is performed on an induced draft counter flow cooling tower. The following observations are made : [16] Water flow rate : 12.67 kg/s Air flow rate : 12.67 kg/s Water entering temperature : 36.3° C Water leaving temperature : 32.1° C Ambient air conditions : 43.3° C DBT, 25.6° C WBT If the dimensions of the tower are length L = 3.9624 m, width W = 2.616 m and height H = 2.438 Determine the following : i) Value of the performance coefficient. ii) The wetted area of tower if air HTC is 83 W/m ² K. iii) Value of mass transfer coefficient iv) Tower efficiency


[5254] - 544

OR

Q8)	a)	Explain working of coil/fill type evaporative cooling tower with r sketch.	neat [8]
	b)	Explain the thermal analysis of cooling tower.	[8]
Q9)	a)	Write a short note on :	[12]
		i) Vortex Tube	
		ii) Thermoelectric Refrigeration	
	b)	Discuss various types of wick structures used in heat pipe.	[6]
		OR	
010	\ \		


- Q10) a) In steam jet refrigeration the dry saturated motive steam is supplied at 6 bar. The amount of motive steam per unit mass of flash vapour is 2 kg/kg. The quality of vapour at the beginning of compression is 0.9. The condensing and flash vapour temperature is 40°C and 5°C respectively. The compression efficiency is 0.78. Obtain the TR of the system for 0.8 kg/s of motive steam and volume of vapour handled by the ejector. (Use steam table for properties). [12]
 - b) Discuss various applications of heat pipe. [6]

[5254] - 544

[5254] - 544

4

[5254] - 544

5