P2136

SEAT No. :

[Total No. of Pages : 4

# [5254]-531

# B. E. (Mechanical) REFRIGERATION AND AIR CONDITIONING (2012 Pattern) (End Semester)

*Time : 2<sup>1</sup>/<sub>2</sub> Hours]* 

[Max. Marks : 70

Instructions to the candidates:

- 1) Neat diagrams must be drawn wherever necessary.
- 2) Figures to the right indicate full marks.
- 3) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 4) Assume suitable data, if necessary.
- 5) All questions are compulsory.
- Q1) a) In a refrigeration plant working on Bell Coleman cycle, operates between pressure limits of 1.05 bar and 8.5 bar. Air is drawn from cold chamber at 10°C, compressed and then cooled to 30°C before entering the expansion cylinder. The expansion and compression follows the law pv<sup>1.3</sup>=C. Determine the theoretical COP of the system. [6]
  - b) What are the advantages and disadvantages of vapor compression cycle over Bell Coleman cycle. [4]

## OR

- Q2) a) A refrigerating system operates on reversed Carnot cycle. The higher temperature of the refrigerant in the system is 35°C and the lower temperature is 15°C. The capacity of the system is to be 12 tonnes. Determine the following.
  - i) COP
  - ii) Heat rejected from the system per hour.
  - iii) Power required
  - b) Explain with neat sketch 'Evaporative Coolers'.

[4] *P.T.O*. *Q3*) a) The temperature limits of an ammonia refrigerating system are 25°C and  $-10^{\circ}$ C. If the gas is dry at the end of compression. Calculate the coefficient of performance of the cycle assuming no under-cooling of the liquid ammonia. Use the following table for properties of ammonia: [6]

| Temperature(°C)               | Liquid heat | Latent heat | Liquid entropy |
|-------------------------------|-------------|-------------|----------------|
|                               | (KJ/kg)     | (KJ/kg)     | (KJ/kg)        |
| 25                            | 298.90      | 1166.94     | 1.1242         |
| – 10°C                        | 135.37      | 1297.68     | 0.5443         |
| b) Define the following terms |             |             |                |

Define the following terms b)

| i) | SEER | ii) | IPLV |
|----|------|-----|------|
|    |      |     |      |

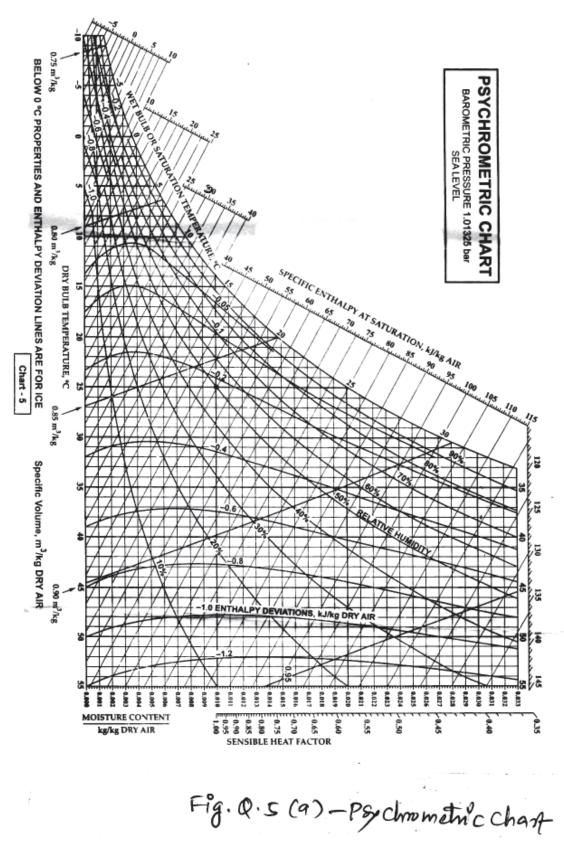
# OR

**Q4**) a) Write note on 'Cascade VCC system'. [5]

[6]

- b) In an absorption system heating, cooling and refrigeration takes place at  $150^{\circ}$ C,  $30^{\circ}$ C and  $-20^{\circ}$ C respectively. Find the theoretical COP of the system. If the generator temperature is increased to 190°C and evaporator temperature is decreased to  $-30^{\circ}$ C, find the percentage change in theoretical COR. [5]
- **Q5**) a) 10 cmm air at 37°C DBT, 24 % RH, flow through a desert cooler having an adiabatic efficiency of 75 %. What is the final dry bulb temperature and RH (Relative Humidity), and how much water is required in kg/hr? (USE PSYCHROMETRIC CHART-See page-4, Fig. Q. 5 (a)) [6]
  - Write note on 'Human Comfort Chart'. [4] b)
  - Define the following terms. c)
    - SHF i)
    - ii) **RSHF**
    - iii) DPT (Dew Point Temperature).

## OR


- **06**) a) On a particular day, the atmospheric air was found to have a dry bulb temperature of 30°C & wet bulb temperature of 18°C. The barometric pressure was observed to be 756 mm of Hg. Without using Psychrometric chart, determine the following properties of moist air. [6]
  - i) RH
  - ii) the specific humidity
  - iii) the dew point temperature
  - the enthalpy of air per kg of dry air. (USE STEAM TABLE) iv)

## [5254]-531

| 1             | b) | Discuss the factors affecting Human Comfort.                                                                                                                                                                                                                                          |                     |  |  |
|---------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|
| (             | c) | Derive an expression of Bypass Factor of coil                                                                                                                                                                                                                                         | [6]                 |  |  |
|               |    |                                                                                                                                                                                                                                                                                       |                     |  |  |
| Q7) :         | a) | Explain with neat sketch 'Summer Air Conditioning System'.                                                                                                                                                                                                                            | [6]                 |  |  |
| 1             | b) | Write note on 'Variable Refrigerant Flow System'.                                                                                                                                                                                                                                     | [6]                 |  |  |
| (             | c) | Explain working of Capillary tube and list its advantages and disadvantages                                                                                                                                                                                                           | .[6]                |  |  |
| OR            |    |                                                                                                                                                                                                                                                                                       |                     |  |  |
| Q8) :         | a) | Explain with neat sketch 'All Year Air Conditioning System'.                                                                                                                                                                                                                          | [6]                 |  |  |
| 1             | b) | Write note on 'Variable Air Volume System'.                                                                                                                                                                                                                                           | [6]                 |  |  |
| (             | c) | Explain with neat sketch 'Evaporative Condensers'.                                                                                                                                                                                                                                    | [6]                 |  |  |
|               |    |                                                                                                                                                                                                                                                                                       |                     |  |  |
| <b>Q9</b> ) : | a) | Explain Equal Friction Method of Duct Design. List its advantages a disadvantages.                                                                                                                                                                                                    | and<br>[ <b>5</b> ] |  |  |
| 1             | b) | A rectangular duct of 0.15 m $\times$ 0.12 m is 20 m long and carries stand<br>air at the rate of 0.3 m <sup>3</sup> /s. Calculate the total pressure required at the in<br>of the duct in order to maintain this flow and the air power required. The<br>friction factor, f = 0.005. | nlet                |  |  |
| (             | c) | Write note on Fan Laws.                                                                                                                                                                                                                                                               | [5]                 |  |  |
|               |    | OR                                                                                                                                                                                                                                                                                    |                     |  |  |
| <b>Q10</b> )  | a) | Write a note on Classification of ducts.                                                                                                                                                                                                                                              | [5]                 |  |  |
| 1             | b) | Explain with neat sketch 'Fan Coil Unit'.                                                                                                                                                                                                                                             | [5]                 |  |  |
| (             | c) | A circular duct of 40 cm diameter is used to carry air in an air conditioning<br>system at a velocity of 440 m/min. If this duct is to be replaced by a<br>rectangular duct of aspect ratio of 1.5, find out the size of rectangular<br>duct for equal friction method. [6]           |                     |  |  |
|               |    | When                                                                                                                                                                                                                                                                                  |                     |  |  |
|               |    | i) Velocity of air in two ducts is same.                                                                                                                                                                                                                                              |                     |  |  |
|               |    | ii) The discharge rate of air in two ducts is same.                                                                                                                                                                                                                                   |                     |  |  |
|               |    | If $f = 0.015$ , find out the pressure loss per 100m length of the duct. Ta                                                                                                                                                                                                           | ake                 |  |  |

If f = 0.015, find out the pressure loss per 100m length of the duct. Take the density of air = 1.15 Kg/m<sup>3</sup>.

[5254]-531



ത്രങ

[5254]-531