Total No. of Questions : 10]

P2140

[5254]-535 B. E. (Mechanical) **TRIBOLOGY** (2012 Pattern) (Elective - I)

Time : 2¹/₂ Hours]

Instructions to the candidates:

- 1) Write Q.1 OR Q.2, Q.3 OR Q.4, Q.5 OR Q.6, Q.7 OR Q.8, Q.9 OR Q.10.
- Figures to the right indicate full marks. 2)
- 3) Assume suitable data whenever necessary.

		1 0	
Q1) a)	Explain different regimes of hydrodynamic lubrication with the h Sribeck curve.	101 101 101 101 101 101 101 101 101 101	
b)	Explain the factors affecting wear. [4]		
	OR		
Q2) a)	Define Tribology. Explain its importance in the design of machine elements.[6]		
b)	What is friction? Explain the laws of dry friction. [4]		
Q3) a)	What is fatigue wear? Where does it occur? [2]		
b)	Following data refers to the full journal bearing. [8]		
	i) Diameter of bearing = 75 mm		
	ii) Length of bearing = 75 mm		
	iii) Load on bearing = 12 KN		
	iv) Speed of journal =1800 rpm		
	v) $\frac{d}{c}$ Ratio = 2000		
	vi) Viscosity of oil = 10 cP at operating temperature.		

Determine the coefficient of friction by using Raimondi and Boyd chart. 'd' is journal diameter and 'c' is the radial clearance in the bearing.

SEAT No. :

[Total No. of Pages : 4

[Max. Marks : 70

S	$\left(\frac{r}{c}\right)\mathbf{f}$	
0.264	5.79	
0.121	3.22	
0.0446	1.70	

Given is table for Dimensionless parameter for 360° Hydrodynamic journal bearing.

OR

Q4) a) What is adhesive wear? Where does it occur?

b) Derive from basic principle, two dimensional Reynolds equations taking usual notation. Also state assumptions made. [8]

[2]

- **Q5)** a) Following data is given for the hydrostatic step bearing : [8]
 - Thrust load = 450 KN
 - Shaft speed = 750 rpm
 - Shaft diameter = 400 mm
 - Recess diameter = 250 mm
 - Viscosity of the lubricant = 30 cP
 - Specific gravity of the lubricant = 0.86
 - Specific heat of the lubricant = $2 \text{ KJ/Kg} \circ C$

Calculate:

- i) The optimum oil-film thickness for minimum power loss
- ii) The frictional power loss
- iii) The pumping power loss
- iv) Total power loss
- v) The temperature rise

Assuming the total power loss in the bearing is converted into the frictional heat.

b) Derive an expression for viscous flow through a rectangular slot [slit] for a constant viscosity. What are the assumptions made while deriving the equation? [8]

OR

[5254]-535

- *Q6)* a) Derive the expression for the pressure distribution, load carrying capacity and time of approach for a circular plate near a plane under hydrostatic squeeze film lubrication.
 - b) Explain the 'Hydrostatic squeeze film lubrication phenomenon with at least four examples. A rectangular plate having 50 mm length and an infinite width is approaching a fixed plane surface. Initially oil-film thickness is 0.035 mm and viscosity of oil is 75 cP. Load supported per unit width of plate is 30 KN/m. [8]

Calculate :

- i) The time required to squeeze the film to 0.008 mm.
- ii) The maximum and average pressure.
- Q7) a) Explain the phenomenon of Elastohydrodynamic lubrication [EHL] and how it differs from hydrodynamic lubrication. State the applications of EHL.[8]
 - b) Explain gas lubricated bearings and state advantages and disadvantages or limitations of gas bearings. [8]

OR

- Q8) a) Explain the significance of the Hertz theory in Elastohydrodynamic Lubrication. Write Ertel-grubin equation with all specific terms and also write the limitations of this equation. [8]
 - b) Explain the working principle of active and passive magnetic bearing. Also mention its types. [8]
- **Q9)** a) Explain the lubrication requirements in case of

[8]

- i) Rolling operation
- ii) Forging operation
- iii) Drawing operation
- iv) Extrusion
- b) How surface engineering processes are specified? Classify in detail the surface engineering processes and Explain any one process in short.[10]

[5254]-535

OR

Q10) Write a note on following. (Any Three) : [18]

- a) Foil bearing
- b) Mechanics of tyre-road interactions.
- c) Properties and parameters of coatings
- d) Hybrid bearing

രാശാശ