Total No. of Questions : 8]

P4013

[5255]-510

[Total No. of Pages : 2

M.E. (Civil - Structures) ADVANCED MECHANICS OF SOLIDS (2013 Pattern) (Credit Course)

Time : 3 Hours] Instructions to the candidates:

- 1) Attempt any five questions from the following.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary and clearly state.
- 5) Use of cell phone is prohibited in the examination hall.
- 6) Use of electronic pocket calculator is allowed.
- **Q1)** a) Obtain Strain compatibility Equation for 2D problem in Elasticity. [5]
 - b) Explain concept of stress at a point and stress on inclined plane. [5]
- **Q2)** a) Define Airys stress function. Prove that stress function ϕ satisfying the governing equation $\nabla^4 \phi = 0$, when body force is absent. [6]
 - b) State and explain generalised Hooks law. Express the stress strain relation for an elastic and isotropic body in terms of engineering constant E and v.
 [4]
- Q3) a) Derive differential equation of equilibrium of plane elasticity problem in polar co-ordinate with usual notation. [7]
 - b) What is axisymmetric problem. Show that for such a problem, the stress function $\phi = A \log r + B r^2 \log r + Cr^2 + D$. [3]
- **Q4)** a) Derive an expression for radial (σ_r) and tangential (σ_i) stresses for thick cylinder of internal radious (r_i) and external radious (r_o) subjected to internal pressure (p_i) [6]
 - b) Derive component of stress due to circular hole in a stressed plate (Michell's problem). [4]

[Max. Marks : 50

SEAT No. :

- **Q5)** A quarter circle beam of radius 1 m curved in plan is fixed at A and free at B. It carries vertical downward load P = 25 kN at free end B. Determine maximum bending moment, torsional moment and deflection. Also draw shear force, bending moment and torsional moment diagram. [10]
- *Q6)* a) Show that the neutral axis of curve beam in elevation is below the centroidal axis towards the center of curvature. [6]
 - b) Differentiate between beam curve in plan and elevation. [4]
- **Q7)** Assuming $\phi = m(x^2 / a^2 + y^2 / b^2 1)$ as a stress function for a bar of elliptical cross section subjected to pure torque Mt about its longitudinal axis, find moment and shear stress components. [10]
- (Q8) a) Derive differential equation for a beam resting on elastic foundation. [4]
 - b) An infinitely long steel beam of unit width and 250 mm thick is resting on elastic foundation whose modulus of foundation is 10 N/mm². A concentrated load of 12 kN is applied at a point. Determine maximum deflection and maximum bending stress assuming E = 200 GPa. [6]

$$\rightarrow$$
 \rightarrow \rightarrow