Total No. of Questions :8]

P4050

[5255]-548

[Total No. of Pages : 2

SEAT No. :

M.E. (Civil) (Water Resources and Environment Engg.) FLUID MACHANICS (2013 Pattern) (Semester - I) (501083)

Time : 3 Hours][Max. Marks : 50Instructions to the candidates:1)1)Answer any five questions.

- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithms tables, slide rule, electronics pocket calculator is allowed.
- 5) Assume suitable data if necessary.
- *Q1)* a) Define circulation, stream function, velocity potential. [6]
 - b) Define hydrodynamically rough and smooth boundaries. [4]
- **Q2)** a) Derive Bernoulli's equation along streamline. [4]
 - b) The velocity distribution in the turbulent boundary layer over a flat plate

is given as $\frac{u}{U_{\infty}} = \frac{3}{2} \frac{y}{\delta} - \frac{1}{2} \left(\frac{y}{\delta}\right)^3$. Obtain an expression for the displacement thickness, momentum thickness and energy thickness. [6]

- Q3) a) Derive equation for stream function and potential function of a source and sink. [4]
 - b) Derive equation for velocity distribution for laminar flow between parallel plates with both plates fixed starting with Navier-Stokes equations. [6]
- **Q4)** a) Given the complex potential, $W = \log_e Z^2$, evaluate the stream and velocity functions. Identify the flow pattern. [4]
 - b) Laminar flow takes place in a circular tube. At what distance from the boundary does the local velocity equal the average velocity. [6]

P.T.O.

Q5)	a)	Derive Karman Momentum Integral equation starting Navier Stok equations.	kes [6]
	b)	What are the characteristics of turbulent flow?	[4]
Q6)	a)	What is boundary layer separation? What are its effects and methods avoid separation?	s to [4]
	b)	Derive Reynolds equation of motion.	[6]
Q7)	a)	Find the stagnation temperature and pressure for carbon dioxide flowi at 150 m/s if the pressure and temperature in undisturbed flow a 500 kPa and 30°C respectively. $k = 1.28$ and $R = 188$ J/kg K.	<u> </u>
	b)	Write in brief about Rayleigh and Fanno lines.	[5]

- Q8) a) Derive equation for stagnation density for a compressible fluid flow. [6]
 - b) Write a short note on compressible flow around submerged bodies. [4]

*কৈ*ৰ্জকৈৰ্জ