Total No. of Questions : 8]

P4054

[5255]-552

[Total No. of Pages : 2

SEAT No. :

M.E. (Civil) (Water Resources & Environmental Engineering) OPEN CHANNEL HYDRAULICS (2013 Course) (Semester - II) (501088)

Time : 3 Hours]

[Max. Marks : 50

Instructions to the candidates:

- 1) Answer any five questions
- 2) Neat diagrams must be drawn wherever necessary
- 3) Figures to the right indicate full marks
- 4) Use of logarithms tables, slide rule, electronics pocket calculator is allowed
- 5) Assume suitable data if necessary
- *Q1*) a) Derive for a trapezoidal channel section of most economical section [4]
 - i) half the top width = length of the sloping side
 - ii) hydraulic radius = $\frac{1}{2}$ the depth of flow
 - b) State the characteristics of M₂ and S₂ profiles. Give examples of their occurrence. [6]
- *Q2)* a) Explain behaviour of slope of water surface profile (dy/dx) at certain key depths. [4]
 - b) Starting from basic principles derive an expression for GVF for a wide rectangular channel in the form [6]

$$\frac{dy}{dx} = S_o \frac{1 - \left(\frac{y_n}{y}\right)^{\frac{1}{3}}}{1 - \left(\frac{y_c}{y}\right)^3}$$

- **Q3)** a) Mention the types of jumps based on the basis of Froud number. [2]
 - b) At a certain section M in a rectangular channel of bed width 2 m, depth of flow is 1.2 m. When the rate of flow is 6 m³/s estimate the distance from M to another section N where the depth is 1.4 m. The bed slope is 0.002 and Manning's n = 0.015. Take two steps. Sketch and classify the profile. [8]

Q4) a)	Derive equation for ratio of sequent depths for hydraulic jump on sloping floor. [5]						
b)	Explain the standard step method for GVF computation. [5]						
Q5) a)	Explain any three SVF profiles on bottom racks with sketches. [6]						
b)	Explain types of surges. [4]						
Q6) a)	Derive dynamic equation of spatially varied flow with decreasing discharge.[4]						
b)	Derive general equation for absolute velocity of uniformly progressing wave in rapidly varied unsteady flow. [6]						
Q7) a)	Explain bed forms. [4]						
b)	What is flood routing? Distinguish between reservoir routing and channel routing. [6]						
Q8) a)	Describe Kennedy's theory for the design of irrigation channel in alluvial soil. [4]						

b) For the following flood hydrograph through a river reach for which K = 12 h and x = 0.20 find the discharge for first two time steps. At the start of the inflow flood the outflow discharge is $10 \text{ m}^3/\text{s}$. [6]

Time (h)	0	6	12	18	24	30	36	42	48	54
In flow m ³ /s	10	20	50	60	55	45	35	27	20	15

x x x