P4057

[5255]-555

M.E. (Mechanical) (Design Engg./CAD-CAM/AutomobileEngg.) ADVANCED MATHEMATICS (2013 Credit Pattern) (Semester-I)

Time : 3 Hours] Instructions to the candidates: [Max. Marks : 50

- 1) Answer any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of non-programmable electronic pocket calculator is allowed.
- 5) Assume suitable data, if necessary.
- Q1) a) Find an orthonormal basis for the space R³, by applying Gram-Schmidt's method to the following vectors: (1, 2, 1), (1, 1, 1) and (3, -2, 1).
 - b) If $\omega = \phi + i\psi$ represents the complex potential for an electric field and if $\phi = 2x x^3 + 3xy^2$, determine the function ψ . [5]

Q2) a) Evaluate
$$\oint_{C} \frac{4-3z}{z(z-1)(z-2)} dz$$
, where C is the circle $|z| = \frac{3}{2}$. [5]

b) Find the Laplace Transform of the periodic function $f(t) = \frac{kt}{T}$ for 0 < t < T, and f(t + T) = f(t). [5]

Q3) a) Solve the following differential equation in series $\frac{d^2y}{dx^2} - x\frac{dy}{dx} + x^2y = 0$.[5]

b) Find the solution of the initial value problem $\frac{d^2x}{dt^2} + \frac{dx}{dt} - 2x = 1 - 2t$ given

$$x = 0, \frac{dx}{dt} = 4$$
 at $t = 0$ using Laplace Transform. [5]

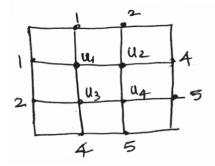
P.T.O.

[Total No. of Pages : 3

Q4) a) Find the largest eigen value and the corresponding eigen vector by power

method for
$$A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
 with $X_0 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$. [5]

b) The steady state two dimensional heat flow in a plate is given by $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$. Find the values of the temperature at the interior points of the square grid given below. [5]



- **Q5)** a) Given $\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2}$, u(0,t) = u(4,t) = 0 and $u(x,0) = \frac{x}{3}(16 x^2)$. Obtain u if h = 1 using Schmidt-Bendre's method upto t = 2. [5]
 - b) Using Rayleigh-Ritz Method solve the boundary value problem $y'' y + 4xe^x = 0$, y(0) = 0 = y(1). [5]
- *Q6*) a) Solve the Euler equation for the following:

Functional
$$\int_{x_1}^{x_2} \left[y^2 + (y')^2 + 2ye^x \right] dx$$
.

b) Find the path followed by a particle given by $y = \alpha + \beta x$ of Least square line that best fit for the data of points; (2, -1), (5, -2) (-7, 3) & (8, 2).[5]

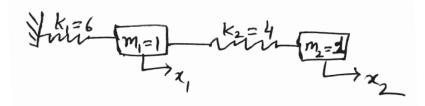
[5255]-555

[5]

Q7) a) Under the transformation $w = \sin z$, prove that the straight line x = c in the *z*-plane maps into conformal hyperbolas in *w*-plane and the straight line y = b in *z* - plane maps into conformal ellipses. [5]

b) Find the fourier transform of
$$e^{-x^2/2}, -\infty < x < \infty$$
. [5]

(Q8) a) The system of motion shown in the figure begins to vibrate. Assuming that there is no friction, determine the subsequent motion. [5]



b) Solve $\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2}$, $0 \le x \le 1$; subject to the initial conditions $u(x,0) = \sin \pi x$, $0 \le x \le 1$ and $U_t(x, 0) = 0$ with boundary conditions u(0,t) = u(1,t) = 0, $t \ge 0$ by taking h = 0.2 upto five levels. [5]

$$\rightarrow$$
 \rightarrow \rightarrow