Total No. of Questions :7]

P4061

SEAT No. :

[Total No. of Pages :2

[5255] - 559

M.E. (Mechanical - Design Engineering) ANALYSIS AND SYNTHESIS OF MECHANISMS (2013 Pattern) (Semester - II)

Time : 3 Hours]

[Max. Marks :50

[10]

Instructions to the candidates:

- 1) Answer any FIVE questions.
- 2) Neat diagrams must be drawn whenever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of calculator is allowed.
- 5) Assume suitable data whenever necessary.

Q1) In a four bar linkage, $\theta_2 = 60^\circ$ $\phi_4 = 90^\circ$ $\omega_2 = 3 \text{ rad/sec}$ $\alpha_2 = -1 \text{ rad/sec}^2$ $\omega_4 = 2 \text{ rad/sec}$ $\alpha_4 = 0 \text{ rad/sec}^2$ Determine dimensions of the link if fixed link is of 100 mm length.

Q2) A mechanism is shown in fig. 01. Determine angular velocity of O_6D and link BCD. Take $\omega_2 = 10$ rad/sec. [10]

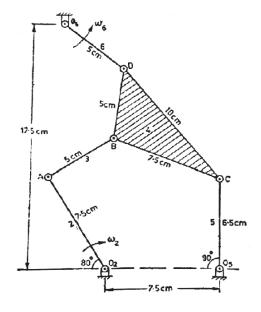
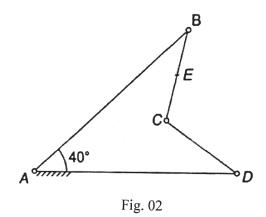



Fig. 01

P.T.O.

Q3) A four bar mechanism is shown in the Fig. 02. The dimensions are AD=AB=60 mm BC = CD = 25 mm. AD is the fixed link and E is midpoint of BC. Determine the centre of curvature of the point E. [10]

- *Q4)* a) What is elastic linkage model? Explain with neat sketches. [5]
 - b) Write element mass, stiffness and system matrices for a beam element modeling an elastic linkage. [5]
- **Q5)** a) Consider a planar robot consisting of three moving links of lengths L_1, L_2 and L_3 . Write Denavit Hartenberg parameters for the robot and express position of output link in terms of these parameters. [7]
 - b) What is inverse kinematics? [3]
- **Q6)** Synthesize a four bar mechanism to generate a function y = 3x + 3 where $0 \le x \le 4$. Assuming initial and final positions of input link as 30° and 150° respectively, whereas for output link 40° and 150° respectively. Determine x, y, θ , ϕ corresponding to three precision positions. The grounded link is horizontal and of 10 cm in length. The crank is of 45 mm in length. Use three precision positions. [10]
- Q7) a) Explain the following:
 - i) Function generation.
 - ii) Path generation.
 - iii) Motion generation.
 - b) State any two forms of Euler Savary equation and derive any one of them from the other. [7]

$$\phi \phi \phi$$

[5255] - 559

[3]