Total No. of Questions : 7]

P4058

SEAT No. :

[Total No. of Pages : 2

[5255] - 556

M.E. (Mechanical) (Design Engineering) MATERIAL SCIENCE AND MECHANICAL BEHAVIOR OF MATERIALS

(2013 Course) (502202) (Semester - I)

Time : 3 Hours]

Instructions to the candidates:

- 1) Answer any five questions.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Use of logarithmic tables slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
- 5) Assume suitable data, if necessary.
- *Q1)* A steel piece initially has a uniform carbon concentration of 0.25 wt% and is to be treated at 950°C. If the concentration of carbon at the surface is suddenly brought to and maintained at 1.20 wt%, how long will it take to achieve a carbon content of 0.80 wt% at a position 0.5 mm below the surface? The diffusion coefficient for carbon in iron at this temperature is 1.6×10^{-11} m²/s.

Assume that the steel piece is sem-infinite.

Given:

Ζ	erf(z)
0.30	0.3286
0.35	0.3794
0.40	0.4284
0.45	0.4755

Q2) The state of stress at a particular point relative to an xyz coordinate system is given by the stress matrix. [10]

$$[\sigma] = \begin{bmatrix} 14 & 7 & -7 \\ 7 & 10 & 0 \\ -7 & 0 & 35 \end{bmatrix} MPa$$

P.T.O.

[10]

[Max. Marks :50

Determine the normal stress and magnitude and direction of the shear stress on a surface intersecting the point and parallel to the plane given by equation 2x - y + 3z = 9.

- *Q3)* To ensure that the neck in a tensile bar would occur at the middle of the gauge section, the machinist made the bar with a 50 mm. diameter in the middle of the gauge section and machined the rest of it to a diameter of 50.5 mm. After testing, the diameter away from the neck was 0.470 in. Assume that the stress-strain relation follows the power law, equation $\sigma = K \in n$. What was the value of n? [10]
- Q4) a) Explain Bend test. [5]
 b) Explain different models of uniaxial behavior of material in plasticity. [5]
 Q5) Explain Elastic-plastic torsion of a solid circular shaft. [10]
 Q6) Explain Residual stresses and Residual Strain in cylinder in torsion. [10]
- Q7 What is viscoelasticity? Explain Kelvin model of viscoelasticity. [10]

* * * *