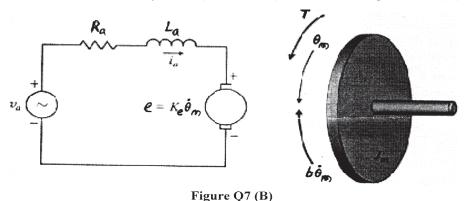
Total No. of Questions : 8]

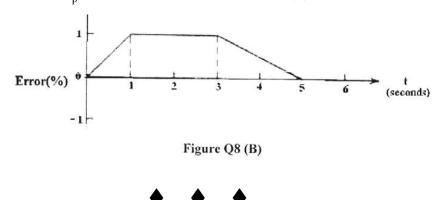
P4065

SEAT No. :


[Total No. of Pages : 2

[5255]-563

M.E. (Mechanical) (Design Engineering) MECHANICAL MEASUREMENTS & CONTROL (2013 Course) (Semester - III) (602214)


Time : 3 Hours]		[Max. Marks : 50
Instructions to the candidates:		
1)	Answer any five questions.	
2)	Neat diagrams must be drawn wherever necessary.	
3)	Figures to the right indicate full marks.	
4) 5)	Use of electronic pocket calculator is allowed. Assume suitable data if necessary.	
-,	y-	
<i>Q1</i>) a)	Explain calibration & Necessity of calibration.	[5]
b)	Explain null & deflection type of instruments.	[5]
Q2) a)	Define	[6]
~ / /	i) Mean	
	ii) Median	
	iii) Standard Deviation	
	iv) Variance	
b)	Write note on Systematic Errors.	[4]
Q3) a)	By using following data find lines of regression & compo coefficient of correlation.	ute Karl Pearson [6]
	$\Sigma x = 15000$ $\Sigma y = 6800$ $\Sigma xy = 1022250$ $\Sigma x^2 = 2272500$ n = 100	$\Sigma y^2 = 463025$
b)	Explain different types of correlation.	[4]
Q4) a)	Explain construction & working of RTD.	[5]
b)	Explain any one instrument used for noise measurement	t. [5]

- Q5) a) How radiation and surface properties can be measured. [5]
 - b) List out various instruments for frequency measurement. Explain stroboscope in detail. [5]
- *Q6)* a) Represent a generic state space model using the block diagram approach and define the elements of the block diagram. [5]
 - b) Explain Poles and Zeros of System. Explain Lyapunov's criterion for stability of system. [5]
- **Q7)** a) Characteristic equation of the system is given $S^4 + 3S^3 + 3S^2 + 2S + K = 0$. Find value of K, if system is stable, using Routh Hurwitz criterion. [5]
 - b) Derive the governing differential equation for the following electro-mechanical system(dc motor) shown in figure Q7(B)[5]

[5]

- Q8) a) Explain Proportional + Integral + Derivative control action.
 - b) Figure Q8 (B) shows an error time graph. Sketch the PD controller output w.r.t. time $K_n = 5\%/\%$, KD = 0.5%/s and m(0) = 20%. [5]

2

[5255]-563