Seat	
No.	

[5252]-173

S.E (Information Technology) (I Sem.) EXAMINATION, 2017 DIGITAL ELECTRONICS AND LOGIC DESIGN (2012 COURSE)

Time: Two Hours Maximum Marks: 50

- N.B. :— (i) Answer Questions 1 or 2, 3 or 4, 5 or 6 and 7 or 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Explain the following characteristics for TTL logic families:[6]
 - (i) Propagation delay
 - (ii) Figure of merit
 - (iii) Fan In.
 - (b) Design full adder circuit using 4:1 Multiplexer. [6] Or
- 2. (a) Express the following numbers in BCD, Excess-3 and Hexadecimal.

 Show step by step calculations: [6]
 - (i) $(27)_{10}$
 - (ii) $(396)_{10}$.
 - (b) Design a circuit to find 9's complement of the single digit BCD number using Binary adder IC 7483. [6]
- 3. (a) What is the advantage of MS J-K Flip-Flop? Explain the working of MS J-K Flip-Flop in detail. [6]
 - (b) Draw and explain the Ring Counter with initial state "10011", from initial state explain all possible states in that Ring.[6] P.T.O.

(a)	Explain the difference between Combinational and Sequential
	Circuit. Also convert J-K Flip-Flop to D Flip-Flop. [6]
(<i>b</i>)	Draw and explain Johnson counter with initial state "1010",
	from initial state explain all possible states. [6]
(a)	Give the comparison between PROM, PLA and PAL. [6]
(<i>b</i>)	Design 3-bit Binary to Gray code converter using PLA. [7]
	Or
(a)	Explain the difference between CPLD and FPGA. [6]
(<i>b</i>)	Design the following function using PLA: [7]
	$F1 = \Sigma m (1, 2, 4, 6) \Sigma 2 = \Sigma m (0, 1, 6, 7) F3 = \Sigma m (2, 6).$
(a)	Write a VHDL code for 4: 1 Mux using Behavioral
	Modelling. [6]
(<i>b</i>)	What is VHDL? What are the important Features of VHDL?
	Write Entity and architecture declaration for 2 input AND
	gate. Assume A and B as input and Z as output of the logic
	gates. [7]
	Or
(a)	What is structural modelling style in VHDL? Write VHDL
	code for 2 input EXOR gate with structural modelling. [6]
(<i>b</i>)	What is the difference between sequential execution and concurrent
	execution of VHDL statements? Explain with the help of suitable
	 (b) (a) (b) (a) (b) (a) (b)

example.

[7]