Seat	
No.	

[5252]-174

S.E. (Information Technology) (I Semester) EXAMINATION, 2017 FUNDAMENTALS OF DATA STRUCTURES

		(2012 PATTERN)
Time	e : T	wo Hours Maximum Marks : 50
<i>N.B.</i>	:	(i) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.
		(ii) Neat diagrams must be drawn wherever necessary.
		(iii) Figures to the right indicate full marks.
		(iv) Assume suitable data if necessary.
1.	(a)	What is structure in 'C' ? How do we declare the pointer
		of structure ? [3]
	(<i>b</i>)	Explain with suitable example function call by reference and
		function call by value. [4]
	(c)	Write a pseudo 'C' routine to multiply two matrices. [5]
		Or
2.	(<i>a</i>)	What is a pointer variable? Explain declaration, initialization
		and accessing a pointer variable with an example. [4]
	(<i>b</i>)	Write and explain any four functions used for file
		handling. [4]
	(c)	Write a pseudo C routine using pointer to add two
		matrices. [4]
3.	(<i>a</i>)	What is frequency count? What is its importance in analysis
		of algorithm ? [4]
	(<i>b</i>)	What is Abstract Data Type ? Explain ADT for an
		array. [4]
		P.T.O.

	(c)	What are Linear and Non-Linear Data Structures ? Explain
		with example. [4]
		Or
4.	(a)	Sort the following numbers using insertion sort. Show all
		passes: [4]
		60, 15, 80, 50, 40, 01, 07, 20
	(<i>b</i>)	Write a pseudo code for binary search without recursion. [4]
	(c)	Explain the time complexity for bubble sort method. [4]
5.	(a)	What is sparse matrix ? What are its applications ? [4]
	<i>(b)</i>	Represent the following polynomials using arrays:
		(i) $15x^{3} - 7xy + y^{2} - 50$
		(ii) $y^{4} + 9y + 5$ [4]
	(c)	Explain row major and column major representation of
		array. [5]
		Or
6.	(<i>a</i>)	Write a pseudo C algorithm for addition of two sparse matrices.[5]
	(<i>b</i>)	Define stack and queue with example. [4]
	(c)	What is dynamic data structure? List the advantages of Linked
		List. [4]
7.	(a)	Define and explain SLL, DLL & CLL with example. [6]
	(<i>b</i>)	Write a pseudo code for the addition of a node after the
		position 'p' in singly linked list. [7]
		Or
8.	(<i>a</i>)	Explain GLL with suitable example. [6]
	(<i>b</i>)	Compare Array with Linked List. List the applications of Linked
		List. [7]