Seat	
No.	

[5252]-118

S.E. (Automobile/Mechanical Engineering) (Second Semester) EXAMINATION, 2017

APPLIED THERMODYNAMICS

(2012 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- **N.B.** :— (i) Solve Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6 and Q. 7 or Q. 8.
 - (ii) All the four questions should be solved in one answer-book and attached extra supplements if required.
 - (iii) Draw neat and labelled diagrams wherever necessary.
 - (iv) Use of Steam Tables, Mollier Charts and scientific calculator is allowed.
 - (v) Assume suitable data wherever necessary.
 - (vi) Figures to the right side indicate full marks.
- 1. (a) Explain any three factors affecting the combustion phenomena of spark ignition engines in detail. [6]
 - (b) Draw ideal and actual valve timing diagram for two stroke petrol engine. [6]

Or

- **2.** (a) Explain with the help of a p-V diagram the loss due to variation of specific heats in an Otto cycle. [6]
 - (b) Explain nozzle lip with a neat diagram in simple carburetor.[6]

3.	(<i>a</i>)	Enlist	various	factors	that	influence	the	delay	period	in	CI
		engine	•								[6]

(b) The air flow to a four cylinder four-troke engine is 2.15 m³/min. During a test on the engine the following data were recorded:

Bore = 10.5 cm

Stroke = 12.5 cm

Engine speed = 1200 rpm

Torque = 150 N-m

Fuel consumption = 5.5 kg/h

Calorific value of fuel = 43124 kJ/kg

Ambient temperature = 20°C

Ambient pressure = 1.03 bars

Calculate:

- (i) The brake thermal efficiency.
- (ii) The brakes mean effective pressure.
- (iii) The volumetric efficiency.

Or

[7]

- **4.** (a) Discuss the effect of the following engine variables on delay period in CI engine: [6]
 - (i) Inlet temperature
 - (ii) Inlet pressure
 - (iii) Compression ratio
 - (b) In a four stroke single cylinder gas engine the indicated mean effective pressure = 0.46 MN/m², the brake power = 9 kW,

speed	=	250	rpm,	mechanical	efficie	ency	=	0.8,	and	bore	to
stroke	rat	tio =	0.66.	Calculate cy	linder (diam	ete	r and	l mea	n pist	ton
speed.											[7]

- **5.** (a) Write a short note on Battery ignition system. [6]
 - (b) Write a short note on Emission control methods for SI and CI engines. [6]

Or

- **6.** (a) Write a short note on splash and Circulating Pump Lubrication System. [6]
 - (b) Write a note on Air pollution due to IC engine and its effect. [6]
- 7. (a) What are the advantages of multi-staging in reciprocating air compressor ? [6]
 - (b) A reciprocating air compressor has four stage compressions with 2 m³/min of air being delivered at 150 bar when initial pressure and temperature are 1 bar, 27°C. Compression occur polytropically following polytropic index of 1.25 in four stages with perfect inter-cooling between stages. For the optimum inter-cooling conditions determine the intermediate pressures and the work required for driving compressor. [7]

Or

8. (a) Compare reciprocating compressors with rotary compressors. [6]

[5252]-118 3 P.T.O.

(b) During an experiment on reciprocating air compressor the following observations are being taken:

Barometer reading = 75.6 cm Hg,

Manometer reading across orifice = 13 cm Hg.

Atmospheric temperature = 25°C.

Diameter of orifice = 15 mm.

Coefficient of discharge across the orifice = 0.65

Take density of Hg = 0.0135951 kg/cm³

Determine the volume of free air handled by compressor in m³/min. [7]