Seat	
No.	

[5252]-505

S.E. (Civil) (First Semester) EXAMINATION, 2017 ENGINEERING MATHEMATICS—III (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6 and Q. No. 7 or Q. No. 8.
 - (ii) Figures to the right indicate full marks.
 - (iii) Neat diagrams must be drawn wherever necessary.
 - (iv) Use of electronic pocket calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Solve any two of the following:

[8]

- (i) $(D^3 D^2 + 4D 4)y = e^x$.
- $(ii) \quad (D^2 + 4)y = \sec 2x.$

(by method of variation of parameters)

(iii)
$$x^3 \frac{d^3 y}{dx^3} + x^2 \frac{d^2 y}{dx^2} - 2y = \frac{1}{x^3}$$
.

(b) Solve the following equations by using Gauss elimination method: [4]

$$2x_{1} + 4x_{2} + x_{3} = 3$$

$$3x_{1} + 2x_{2} - 2x_{3} = -2$$

$$x_{1} - x_{2} + x_{3} = 6$$

$$Or$$

2. (a) A light horizontal strut AB of length l is freely pinned at A and B and is under the action of equal and opposite

P.T.O.

compressive forces P at each of its ends and carries a load W at its centre. How that the deflection at its centre is :

$$\frac{\mathbf{W}}{2\mathbf{P}} \left[\frac{1}{n} \tan \frac{nl}{2} - \frac{l}{2} \right]$$

where
$$n^2 = \frac{P}{EI}$$
. [4]

(b) Use Runge-Kutta method of fourth order to obtain y when x = 1.1 for [4]

$$\frac{dy}{dx} = x^2 + y^2;$$

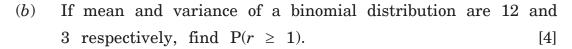
$$y(1) = 1.5, h = 0.1$$

(c) Solve the following system by Cholesky's method:

$$4x_1 + 2x_2 + 14x_3 = 14$$

 $2x_1 + 17x_2 - 5x_3 = -101$
 $14x_1 - 5x_2 + 83x_3 = 155$ [4]

3. (a) Calculate first three moments of the following distribution about the mean: [4]



(c) Find the directional derivative of $\phi = x^2 - y^2 - 2z^2$ at the point P(2, -1, 3) in the direction PQ where Q(5, 6, 4). [4]

Or

4. (a) Prove the following (any
$$one$$
): [4]

(i)
$$\nabla . (r^3 \overline{r}) = 3r(r^2 + 1)$$

(ii)
$$\nabla^2 \left[\nabla \cdot (r^{-2} \overline{r}) \right] = 2r^{-4}$$

(b) Prove that:

$$\overline{\mathbf{F}} = \frac{1}{r} [r^2 \overline{a} + (\overline{a} \cdot \overline{r}) \overline{r}]$$

is irrotational. [4]

(c) Obtain correlation coefficient between population density and death rate from the data related to 5 cities. [4]

Population	density	Death rate
200		12
500		18
400		16
700		21
300		10

5. (a) Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ where $\overline{F} = (x^2 + y^2)\hat{i} + (x^2 - y^2)\hat{j}$ and C is the

curve $y = x^2$ joining (0, 0) and (1, 1). [5]

- (b) Using Gauss divergence theorem, for the vector function $\overline{F} = (x^3 yz)i 2x^2y\hat{j} + 2\hat{k}$ evaluate $\iint_S \overline{F}$. $d\overline{S}$, where S is the surface bounding. The cube x = 0, y = 0, z = 0 and x = a, y = a and z = a.
- (c) Evaluate using Stokes' theorem $\int_{C} \overline{F} \cdot d\overline{r}$, where $\overline{F} = yz\hat{i} + zx\hat{j} + xy\hat{k}$ and C is the curve $x^2 + y^2 = 1$, $z = y^2$. [4]
- **6.** (a) Show that $\overline{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is a conservative force field. Find the work done by the force \overline{F} in moving the object from (1, -2, 1) to (3, 1, 4). [5]
 - (b) Evaluate using Stokes' theorem $\iint_{S} \nabla \times \overline{F} \cdot d\overline{S}$, where $\overline{F} = (2x y)\hat{i} yz^{2}\hat{j} y^{2}z\hat{k}$, where S is the upper half surface of the sphere $x^{2} + y^{2} + z^{2} = 1$ and $z \geq 0$. [4]
 - (c) Evaluate $\iint_{S} \overline{r} \cdot \hat{n} dS$ over the surface of a sphere of radius 2 with origin as centre. [4]
- **7.** (a) Solve $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$ subject to the following conditions: [7]
 - $(i) y(0, t) = 0, \forall t$
 - $(ii) \quad y(l, t) = 0, \ \forall t$
 - $(iii) \quad \left(\frac{\partial y}{\partial t}\right)_{t=0} = 0$

(iv)
$$y(x, 0) = \frac{3a}{2l}x, 0 < x < \frac{2l}{3}$$

= $\frac{3a}{l}(l-x), \frac{2l}{3} < x < l$.

(b) An infinitely long plane uniform plate is bounded by two parallel edges in the y-direction and an end at right angles to them. The breadth of the plate is π. This end is maintained at the constant temperature 40°C at all points and other edges at zero temperature. Find the steady state temperature u(x, y).
[6]

Or

- **8.** (a) Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial r^2}$ subject to the following conditions: [7]
 - (i) u is finite for all t
 - (ii) $u(0, t) = 0, \forall t$
 - (iii) $u(l, t) = 0, \forall t$
 - (iv) $u(x, 0) = \pi x x^2, 0 \le x \le \pi.$
 - (b) Solve the wave equation :

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

[6]

subject to the following conditions:

- $(i) \qquad u \ (0, \ t) \ = \ 0, \ \ \forall \ t$
- (ii) $u(\pi, t) = 0, \forall t$
- $(iii) \quad \left(\frac{\partial u}{\partial t}\right)_{t=0} = 0$
- (iv) $u(x, 0) = 2x, 0 < x < \pi.$