Seat	
No.	

[5252]-503

S.E (Civil) (I Sem.) EXAMINATION, 2017 GEOTECHNICAL ENGINEERING (2015 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Q. 5 or Q. 6, Q. 7 or Q. 8.
 - (ii) Neat diagram must be drawn wherever necessary.
 - (iii) Figures to the right side indicate full marks.
 - (iv) Use of Calculator is allowed.
 - (iv) Assume suitable data if necessary.
- 1. (a) What are the major soil deposits of India? Explain any two in brief. [6]
 - (b) State how field permeability is determined. Explain any one method. [6]

Or

- 2. (a) Define shrinkage limit. A shrinkage limit test gave the following observations. Determine the shrinkage limit. Volume of dry pat = 29.30 ml, Mass of dry pat = 48.32 gm, Initial volume (wet) = 43.50 ml, Initial mass (wet) = 66.66 gm, Find the shrinkage limit. [6]
 - (b) Explain flow net construction for seepage below earthen dam.[6]
- 3. (a) What are the advantages of triaxial compression test in comparison with the direct Shear test? [6]
 - (b) Write a short note on "Proctor needle in field compaction control." [6]

		- -
4.	(a)	Define sensitivity and thixotropy. [7]
		A cohesive soil has an angle of shearing resistance of 15° &
		cohesion of 35 kN/m ² . If a specimen of this soil is subjected
		to a triaxial compression test, find the value of lateral pressure
		in the cell for failure to occur at a total axial stress of
		300 kN/m^2 .
	(<i>b</i>)	Write the equations for stresses in soil for point loading by
		Boussinesq's and Westergaard's theory and assumptions in these
		theories. [6]
5 .	(a)	Explain Coulomb's Wedge theory for determination of earth
		pressure. [6]
	(<i>b</i>)	A vertical retaining wall retains the level backfill of sand. The
		water level stands H_1 metres below the top of the backfill.
		Draw the pressure distribution diagram for the active conditions.[6]
		Or
6.	(a)	State the assumptions made in Rankine's Earth Pressure theory
		and derive the relation for earth pressure at rest condition.[6]
	(<i>b</i>)	Explain active state of earth pressure condition.
		A wall 6 m high has a smooth vertical back and it retains
		a non-cohesive level backfill with $\gamma = 18.0$ kN/m ³ , $\phi = 30^{\circ}$.
		Determine the total lateral pressure in active state. [6]
7.	(a)	What is Stabilization-solidification? How is chemical
		decontamination carried out ? [6]
	(<i>b</i>)	What is infinite and Finite slopes? Give examples.
		Explain how the stability charts are used in the design of

slopes.

[7]

- 8. (a) Derive the critical height of slope for a verical excavation in a c- Φ soil. What is the critical height of vertical excavation that can be made without any lateral support in a cohesive soil having the following properties- $\gamma = 18$ kN/m³, c = 14 kN/m², $\Phi = 12^{\circ}$.
 - (b) Write a short note on subsurface contamination and contaminant transport. [7]