Total No. of Questions : 12]

P2397

[5253] - 108 T.E. (Civil) (Semester - II) FOUNDATION ENGINEERING (2012 Pattern)

Time : 2.30 Hours

Instructions to the candidates :

- 1) Answer Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8, Q.9 or Q.10 and Q.11 or *0.12*.
- 2) Neat diagrams must be drawn whenever necessary.
- Figures to the right indicate full marks. 3)
- 4) Assume suitable data, if necessary and mention it clearly.

SECTION - I

01) Explain electrical resistivity method with respect to [6]

- a) Principle
- Procedure b)
- c) Sketch
- Limitations d)

OR

Q2) Discuss how you will determine the depth and number of boreholes for important projects. [6]

- **Q3)** Explain plate load test with respect to
 - a) Procedure
 - b) Sketch
 - Limitations c)

OR

- Q4) Using Terzaghi's theory, compute the safe bearing capacity of a footing of size $5m \times 3m$ located at a depth of 1.5m below the ground level in a loose sand of average density of 16 kN/rn³. Take $\varphi = 35^{\circ}$, Nc = 46.13, Nq=33.3,
 - $N_{v} = 40.71$. Assume factor of safety = 3 and water table very deep. [7]
- Define contact pressure. Draw a diagram showing the variation of contact **Q5)** a) pressure for a rigid footing on clay and sand. [3]
 - b) Explain with a neat sketch spring analogy for demonstrating consolidation process. [4]

[Max. Marks: 70

[7]

SEAT No. :

[Total No. of Pages : 2

Q6) In a consolidation test, the void ratio of the specimen, which was 1.068 under the effective stress of 214 KN/m², changed to 0.994 when the pressure was increased to 429 KN/m². Calculate the coefficient of compressibility, compression index and coefficient of volume compressibility. [7]

SECTION - II

	SECTION - II
Q 7) a)	Explain 'cyclic pile load' test. [6]
b)	What is the effect of negative skin friction on pile? How it can be reduced?[5]
c)	Enlist the types of piles according to function. [5]
,	OR
Q8) a)	What is caisson? Enlist its uses. [4]
b)	Enlist the advantages and disadvantages of drilled piers. [6]
c)	A circular pile section with 0.35 m diameter and length of 10 m penetrates
-)	into a clay having $c = 50 \text{ kN/m}^2$ and mobilization factor = 0.8. Calculate
	the safe load with factor of safety = 2.5 . Neglect the bearing resistance.[6]
	the sure roug with factor of surery 2.3. (region the bouring resistance.[0]
Q9) a)	Explain the terms with sketches [6]
~ / /	i) free earth support and
	ii) fixed earth support in sheet piles.
b)	What is anchored sheet pile? Enlist and draw any four types of anchors. [5]
c)	Discuss any three types of cofferdams. [6]
0)	OR [0]
Q10) a)	Explain any three engineering problems associated with black cotton soil.[6]
b)	
c)	Draw a neat sketch of 'under reamed pile' and name all the parts. [5]
Q11) a)	Explain with a neat sketch, the mechanism of reinforced soil. [6]
b)	Explain any three types of geosynthetics. [6]
c)	Explain the use of geosynthetics in bearing capacity improvement. [5]
•)	OR
Q12) a)	What do you mean by 'Liquefaction'? What are its effects on built
	environment? [6]
b)	Explain different types of seismic waves. [6]
c)	Explain how possibility of Liquefaction can be reduced? [5]
0)	Explain now possibility of Elqueraction can be reduced? [5]
